ترغب بنشر مسار تعليمي؟ اضغط هنا

A Price-Anticipating Resource Allocation Mechanism for Distributed Shared Clusters

68   0   0.0 ( 0 )
 نشر من قبل Kevin Lai
 تاريخ النشر 2005
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we formulate the fixed budget resource allocation game to understand the performance of a distributed market-based resource allocation system. Multiple users decide how to distribute their budget (bids) among multiple machines according to their individual preferences to maximize their individual utility. We look at both the efficiency and the fairness of the allocation at the equilibrium, where fairness is evaluated through the measures of utility uniformity and envy-freeness. We show analytically and through simulations that despite being highly decentralized, such a system converges quickly to an equilibrium and unlike the social optimum that achieves high efficiency but poor fairness, the proposed allocation scheme achieves a nice balance of high degrees of efficiency and fairness at the equilibrium.



قيم البحث

اقرأ أيضاً

P2P clusters like the Grid and PlanetLab enable in principle the same statistical multiplexing efficiency gains for computing as the Internet provides for networking. The key unsolved problem is resource allocation. Existing solutions are not economi cally efficient and require high latency to acquire resources. We designed and implemented Tycoon, a market based distributed resource allocation system based on an Auction Share scheduling algorithm. Preliminary results show that Tycoon achieves low latency and high fairness while providing incentives for truth-telling on the part of strategic users.
In the standard Mechanism Design framework, agents messages are gathered at a central point and allocation/tax functions are calculated in a centralized manner, i.e., as functions of all network agents messages. This requirement may cause communicati on and computation overhead and necessitates the design of mechanisms that alleviate this bottleneck. We consider a scenario where message transmission can only be performed locally so that the mechanism allocation/tax functions can be calculated in a decentralized manner. Each agent transmits messages to her local neighborhood, as defined by a given message-exchange network, and her allocation/tax functions are only functions of the available neighborhood messages. This scenario gives rise to a novel research problem that we call Distributed Mechanism Design. In this paper, we propose two distributed mechanisms for network utility maximization problems that involve private and public goods with competition and cooperation between agents. As a concrete example, we use the problems of rate allocation in networks with either unicast or multirate multicast transmission protocols. The proposed mechanism for each of the protocols fully implements the optimal allocation in Nash equilibria and its message space dimensionality scales linearly with respect to the number of agents in the network.
We propose a distributed algorithm to solve a special distributed multi-resource allocation problem with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, whic h only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent is unaware of the resource allocation of other agents. We also propose a version of the AIMD algorithm for multiple binary resources (e.g., parking spaces). Binary resources are indivisible unit-demand resources, and each agent either allocated one unit of the resource or none. In empirical results, we observe that in both cases, the average allocations converge over time to optimal allocations.
Distributed clusters like the Grid and PlanetLab enable the same statistical multiplexing efficiency gains for computing as the Internet provides for networking. One major challenge is allocating resources in an economically efficient and low-latency way. A common solution is proportional share, where users each get resources in proportion to their pre-defined weight. However, this does not allow users to differentiate the value of their jobs. This leads to economic inefficiency. In contrast, systems that require reservations impose a high latency (typically minutes to hours) to acquire resources. We present Tycoon, a market based distributed resource allocation system based on proportional share. The key advantages of Tycoon are that it allows users to differentiate the value of their jobs, its resource acquisition latency is limited only by communication delays, and it imposes no manual bidding overhead on users. We present experimental results using a prototype implementation of our design.
Many cluster management systems (CMSs) have been proposed to share a single cluster with multiple distributed computing systems. However, none of the existing approaches can handle distributed machine learning (ML) workloads given the following crite ria: high resource utilization, fair resource allocation and low sharing overhead. To solve this problem, we propose a new CMS named Dorm, incorporating a dynamically-partitioned cluster management mechanism and an utilization-fairness optimizer. Specifically, Dorm uses the container-based virtualization technique to partition a cluster, runs one application per partition, and can dynamically resize each partition at application runtime for resource efficiency and fairness. Each application directly launches its tasks on the assigned partition without petitioning for resources frequently, so Dorm imposes flat sharing overhead. Extensive performance evaluations showed that Dorm could simultaneously increase the resource utilization by a factor of up to 2.32, reduce the fairness loss by a factor of up to 1.52, and speed up popular distributed ML applications by a factor of up to 2.72, compared to existing approaches. Dorms sharing overhead is less than 5% in most cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا