ﻻ يوجد ملخص باللغة العربية
The even cycle problem for both undirected and directed graphs has been the topic of intense research in the last decade. In this paper, we study the computational complexity of emph{cycle length modularity problems}. Roughly speaking, in a cycle length modularity problem, given an input (undirected or directed) graph, one has to determine whether the graph has a cycle $C$ of a specific length (or one of several different lengths), modulo a fixed integer. We denote the two families (one for undirected graphs and one for directed graphs) of problems by $(S,m)hbox{-}{rm UC}$ and $(S,m)hbox{-}{rm DC}$, where $m in mathcal{N}$ and $S subseteq {0,1, ..., m-1}$. $(S,m)hbox{-}{rm UC}$ (respectively, $(S,m)hbox{-}{rm DC}$) is defined as follows: Given an undirected (respectively, directed) graph $G$, is there a cycle in $G$ whose length, modulo $m$, is a member of $S$? In this paper, we fully classify (i.e., as either polynomial-time solvable or as ${rm NP}$-complete) each problem $(S,m)hbox{-}{rm UC}$ such that $0 in S$ and each problem $(S,m)hbox{-}{rm DC}$ such that $0 otin S$. We also give a sufficient condition on $S$ and $m$ for the following problem to be polynomial-time computable: $(S,m)hbox{-}{rm UC}$ such that $0 otin S$.
Best match graphs (BMGs) are vertex-colored directed graphs that were introduced to model the relationships of genes (vertices) from different species (colors) given an underlying evolutionary tree that is assumed to be unknown. In real-life applicat
Rummikub is a tile-based game in which each player starts with a hand of $14$ tiles. A tile has a value and a suit. The players form sets consisting of tiles with the same suit and consecutive values (runs) or tiles with the same value and different
This paper is aimed to investigate some computational aspects of different isoperimetric problems on weighted trees. In this regard, we consider different connectivity parameters called {it minimum normalized cuts}/{it isoperimteric numbers} defined
We study the query complexity of quantum learning problems in which the oracles form a group $G$ of unitary matrices. In the simplest case, one wishes to identify the oracle, and we find a description of the optimal success probability of a $t$-query
The question if a given partial solution to a problem can be extended reasonably occurs in many algorithmic approaches for optimization problems. For instance, when enumerating minimal dominating sets of a graph $G=(V,E)$, one usually arrives at the