ترغب بنشر مسار تعليمي؟ اضغط هنا

DIAMOnDS - DIstributed Agents for MObile & Dynamic Services

48   0   0.0 ( 0 )
 نشر من قبل Umer Farooq Khalid
 تاريخ النشر 2003
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributed Services Architecture with support for mobile agents between services, offer significantly improved communication and computational flexibility. The uses of agents allow execution of complex operations that involve large amounts of data to be processed effectively using distributed resources. The prototype system Distributed Agents for Mobile and Dynamic Services (DIAMOnDS), allows a service to send agents on its behalf, to other services, to perform data manipulation and processing. Agents have been implemented as mobile services that are discovered using the Jini Lookup mechanism and used by other services for task management and communication. Agents provide proxies for interaction with other services as well as specific GUI to monitor and control the agent activity. Thus agents acting on behalf of one service cooperate with other services to carry out a job, providing inter-operation of loosely coupled services in a semi-autonomous way. Remote file system access functionality has been incorporated by the agent framework and allows services to dynamically share and browse the file system resources of hosts, running the services. Generic database access functionality has been implemented in the mobile agent framework that allows performing complex data mining and processing operations efficiently in distributed system. A basic data searching agent is also implemented that performs a query based search in a file system. The testing of the framework was carried out on WAN by moving Connectivity Test agents between AgentStations in CERN, Switzerland and NUST, Pakistan.



قيم البحث

اقرأ أيضاً

Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the networks diameter. Crux is a general framework to build locality-preserving d istributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preservi
Advances in mobile computing have paved the way for new types of distributed applications that can be executed solely by mobile devices on device-to-device (D2D) ecosystems (e.g., crowdsensing). Sophisticated applications, like cryptocurrencies, need distributed ledgers to function. Distributed ledgers, such as blockchains and directed acyclic graphs (DAGs), employ consensus protocols to add data in the form of blocks. However, such protocols are designed for resourceful devices that are interconnected via the Internet. Moreover, existing distributed ledgers are not deployable to D2D ecosystems since their storage needs are continuously increasing. In this work, we introduce and analyse Mneme, a DAG-based distributed ledger that can be maintained solely by mobile devices. Mneme utilizes two novel consensus protocols: Proof-of-Context (PoC) and Proof-of-Equivalence (PoE). PoC employs users context to add data on Mneme. PoE is executed periodically to summarize data and produce equivalent blocks that require less storage. We analyze Mnemes security and justify the ability of PoC and PoE to guarantee the characteristics of distributed ledgers: persistence and liveness. Furthermore, we analyze potential attacks from malicious users and prove that the probability of a successful attack is inversely proportional to the square of the number of mobile users who maintain Mneme.
This paper introduces a new resource allocation problem in distributed computing called distributed serving with mobile servers (DSMS). In DSMS, there are $k$ identical mobile servers residing at the processors of a network. At arbitrary points of ti me, any subset of processors can invoke one or more requests. To serve a request, one of the servers must move to the processor that invoked the request. Resource allocation is performed in a distributed manner since only the processor that invoked the request initially knows about it. All processors cooperate by passing messages to achieve correct resource allocation. They do this with the goal to minimize the communication cost. Routing servers in large-scale distributed systems requires a scalable location service. We introduce the distributed protocol GNN that solves the DSMS problem on overlay trees. We prove that GNN is starvation-free and correctly integrates locating the servers and synchronizing the concurrent access to servers despite asynchrony, even when the requests are invoked over time. Further, we analyze GNN for one-shot executions, i.e., all requests are invoked simultaneously. We prove that when running GNN on top of a special family of tree topologies---known as hierarchically well-separated trees (HSTs)---we obtain a randomized distributed protocol with an expected competitive ratio of $O(log n)$ on general network topologies with $n$ processors. From a technical point of view, our main result is that GNN optimally solves the DSMS problem on HSTs for one-shot executions, even if communication is asynchronous. Further, we present a lower bound of $Omega(max{k, log n/loglog n})$ on the competitive ratio for DSMS. The lower bound even holds when communication is synchronous and requests are invoked sequentially.
This paper shows for the first time that distributed computing can be both reliable and efficient in an environment that is both highly dynamic and hostile. More specifically, we show how to maintain clusters of size $O(log N)$, each containing more than two thirds of honest nodes with high probability, within a system whose size can vary textit{polynomially} with respect to its initial size. Furthermore, the communication cost induced by each node arrival or departure is polylogarithmic with respect to $N$, the maximal size of the system. Our clustering can be achieved despite the presence of a Byzantine adversary controlling a fraction $bad leq {1}{3}-epsilon$ of the nodes, for some fixed constant $epsilon > 0$, independent of $N$. So far, such a clustering could only be performed for systems who size can vary constantly and it was not clear whether that was at all possible for polynomial variances.
Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with eac h task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا