ﻻ يوجد ملخص باللغة العربية
We model driven two-dimensional charge-density waves in random media via a modified Swift-Hohenberg equation, which includes both amplitude and phase fluctuations of the condensate. As the driving force is increased, we find that the defect density first increases and then decreases. Furthermore, we find switching phenomena, due to the formation of channels of dislocations. These results are in qualitative accord with recent dynamical x-ray scattering experiments by Ringlandet al. and transport experiments by Lemay et al.
Charge, spin, as well as lattice instabilities are investigated in isolated or weakly coupled chains of correlated electrons at quarter-filling. Our analysis is based on extended Hubbard models including nearest neighbor repulsion and Peierls couplin
The rich order parameter of Spin Density Waves allows for unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of a staggered magnetization. It becomes energetically preferable to ordinary dislocation
We report results demonstrating a singularity in the hysteresis of magnetic materials, the reversal-field memory effect. This effect creates a nonanalyticity in the magnetization curves at a particular point related to the history of the sample. The
We discovered the chirality of charge density waves (CDW) in 1T-TiSe$_2$ by using scanning tunnelling microscopy (STM) and optical ellipsometry. We found that the CDW intensity becomes $I{a_1}:I{a_2}:I{a_3} = 1:0.7 pm 0.1:0.5 pm 0.1$, where $Ia_i$ (i
We analyse the influence of diagonal disorder (random site energy) on Charge Density Wave (CDW) and Superconductivity (SS) in local pair systems which are described by the model of hard core charged bosons on a lattice. This problem was previously st