ﻻ يوجد ملخص باللغة العربية
The density of states of Dirac fermions with a random mass on a two-dimensional lattice is considered. We give the explicit asymptotic form of the single-electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak-disorder expansion in the parameter g/m^2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non-uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.
We calculate the tunneling density-of-states (DOS) of a disorder-free two-dimensional interacting electron system with a massless-Dirac band Hamiltonian. The DOS exhibits two main features: i) linear growth at large energies with a slope that is supp
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport beha
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow
We focus on the confinement of two-dimensional Dirac fermions within the waveguides created by realistic magnetic fields. Understanding of their band structure is of our main concern. We provide easily applicable criteria, mostly depending only on th
We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O