ﻻ يوجد ملخص باللغة العربية
Helium atoms are strongly attracted to the interstitial channels within a bundle of carbon nanotubes. The strong corrugation of the axial potential within a channel can produce a lattice gas system where the weak mutual attraction between atoms in neighboring channels of a bundle induces condensation into a remarkably anisotropic phase with very low binding energy. We estimate the binding energy and critical temperature for 4He in this novel quasi-one-dimensional condensed state. At low temperatures, the specific heat of the adsorbate phase (fewer than 2% of the total number of atoms) greatly exceeds that of the host material.
An analogue to Raoults law is determined for the case of a 3He-4He mixture adsorbed in the interstitial channels of a bundle of carbon nanotubes. Unlike the case of He mixtures in other environments, the ratio of the partial pressures of the coexisti
Grand canonical Monte Carlo simulations have been performed to determine the adsorption behavior of Ar and Kr atoms on the exterior surface of a rope (bundle) consisting of many carbon nanotubes. The computed adsorption isotherms reveal phase transit
We explore the properties of atoms confined to the interstitial regions within a carbon nanotube bundle. We find that He and Ne atoms are of ideal size for physisorption interactions, so that their binding energies are much greater there than on plan
We report a first principles analysis of electronic transport characteristics for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube coupling causes universal conductance suppression near Fermi level regardless of the rotational
We report on experiments conducted on single walled carbon nanotube bundles aligned in chains and connected through a natural contact barrier. The dependence upon the temperature of the transport properties is investigated for samples having differen