ﻻ يوجد ملخص باللغة العربية
We have created vortices in two-component Bose-Einstein condensates. The vortex state was created through a coherent process involving the spatial and temporal control of interconversion between the two components. Using an interference technique, we map the phase of the vortex state to confirm that it possesses angular momentum. We can create vortices in either of the two components and have observed differences in the dynamics and stability.
Quasi-one-dimensional solitons that may occur in an elongated Bose-Einstein condensate become unstable at high particle density. We study two basic modes of instability and the corresponding bifurcations to genuinely three-dimensional solitary waves
We experimentally and numerically demonstrate deterministic creation and manipulation of a pair of oppositely charged singly quantized vortices in a highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned, focused Gaussian laser beam
We investigate the existence and especially the linear stability of single and multiple-charge quantized vortex states of nonlinear Schroedinger equations in the presence of a periodic and a parabolic potential in two spatial dimensions. The study is
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscilla
Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the