ترغب بنشر مسار تعليمي؟ اضغط هنا

Triplet Waves in a Quantum Spin Liquid

95   0   0.0 ( 0 )
 نشر من قبل Collin Broholm
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a neutron scattering study of the spin-1/2 alternating bond antiferromagnet Cu(NO_3)_2. 2.5D_2O for 0.06<k_BT/J_1<1.5. For k_BT/J_1 << 1 the excitation spectrum is dominated by a coherent singlet-triplet mode centered at J_1=0.442(2) meV with sinusoidal dispersion and a bandwidth of J_2=0.106(2) meV. A complete description of the zero temperature contribution to the scattering function from this mode is provided by the Single Mode Approximation. At finite temperatures we observe exponentially activated band narrowing and damping. The relaxation rate is thermally activated and wave vector dependent with the period icity of the reciprocal lattice.

قيم البحث

اقرأ أيضاً

We consider a two-dimensional disordered conductor in the regime when the superconducting phase is destroyed by the magnetic field. We observe that the end point of the superconductivity is a quantum critical point separating the conventional superco nducting phase from a state with the odd-frequency spin-triplet pairing instability. We speculate that this could shed light on a rather mysterious insulating state observed in strongly disordered superconducting films in a broad region of the magnetic fields.
When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating spin liquid state down to low temperatures. Magnetic order of local moments can also be suppressed when they are fully screened by conduction ele ctrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transitions. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr$_2$Ir$_2$O$_7$, which displays a chiral spin liquid state below 1.5 K due to the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.
Magnetic susceptibility, NMR, muSR, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphous with the herbertsmithite mineral, is a gapless spin liquid with frustrated interactions showing unusual dynamic short-range correlations of non-coplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to thermodynamical data. The experimental data are compared to theoretical calculations using the Schwinger-boson approach.
This article is an introductory review of the physics of quantum spin liquid (QSL) states. Quantum magnetism is a rapidly evolving field, and recent developments reveal that the ground states and low-energy physics of frustrated spin systems may deve lop many exotic behaviors once we leave the regime of semi-classical approaches. The purpose of this article is to introduce these developments. The article begins by explaining how semi-classical approaches fail once quantum mechanics become important and then describes the alternative approaches for addressing the problem. We discuss mainly spin $1/2$ systems, and we spend most of our time in this article on one particular set of plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are usually classified in the category of so-called $SU(2)$, $U(1)$ or $Z_2$ spin liquid states. We review the basic theory regarding these states and the extensions of these states to include the effect of spin-orbit coupling and to higher spin ($S>1/2$) systems. Two other important approaches with strong influences on the understanding of spin liquid states are also introduced: (i) matrix product states and projected entangled pair states and (ii) the Kitaev honeycomb model. Experimental progress concerning spin liquid states in realistic materials, including anisotropic triangular lattice systems ($kappa$-(ET)$_{2}$Cu$_{2}$(CN)$_{3}$ and EtMe$_{3}$Sb[(Pd(dmit)$_{2}$]$_{2}$), kagome lattice systems (ZnCu$_{3}$(OH)$_{6}$Cl$_{2}$) and hyperkagome lattice systems (Na$_{4}$Ir$_{3}$O$_{8}$), is reviewed and compared against the corresponding theories.
Spin liquid is a state of electron spins in which quantum fluctuation breaks magnetic ordering while maintaining spin correlation. It has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing spin liquid has been quite difficult. Typical spin liquid states are realized in one-dimensional spin systems, called quantum spin chains. Here, we show that a spin liquid in a spin-1/2 quantum chain generates and carries spin current via its long-range spin fluctuation. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing the spin liquid state, which can be used for atomic spin-current wiring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا