ﻻ يوجد ملخص باللغة العربية
We report on a contrasting behavior of the in-plane and out-of-plane magnetoresistance (MR) in heavily underdoped antiferromagnetic (AF) YBa_2Cu_3O_{6+x} (x<0.37). The out-of-plane MR (I//c) is positive over most of the temperature range and shows a sharp increase, by about two orders of magnitude, upon cooling through the Neel temperature T_N. A contribution associated with the AF correlations is found to dominate the out-of-plane MR behavior for H//c from far above T_N, pointing to the key role of spin fluctuations in the out-of-plane transport. In contrast, the transverse in-plane MR (I//a(b);H//c) appears to be small and smooth through T_N, implying that the development of the AF order has little effect on the in-plane resistivity.
We present a study of the in-plane and out-of-plane magnetoresistance (MR) in heavily-underdoped, antiferromagnetic YBa_2Cu_3O_{6+x}, which reveals a variety of striking features. The in-plane MR demonstrates a d-wave-like anisotropy upon rotating th
We report novel features in the in-plane magnetoresistance (MR) of heavily underdoped YBa_2Cu_3O_{6+x}, which unveil a developed ``charged stripe structure in this system. One of the striking features is an anisotropy of the MR with a d-wave symmetry
We report a polarized neutron scattering study of the orbital-like magnetic order in strongly underdoped ${rm YBa_2Cu_3O_{6.45}}$ and ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$. Their hole doping levels are located on both sides of the critical doping
Static charge-density wave (CDW) and spin-density wave (SDW) order has been convincingly observed in La-based cuprates for some time. However, more recently it has been suggested by quantum oscillation, transport and thermodynamic measurements that d
We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuati