ﻻ يوجد ملخص باللغة العربية
Using computer simulations we investigate the microscopic structure of the singular director field within a nematic droplet. As a theoretical model for nematic liquid crystals we take hard spherocylinders. To induce an overall topological charge, the particles are either confined to a two-dimensional circular cavity with homeotropic boundary or to the surface of a three-dimensional sphere. Both systems exhibit half-integer topological point defects. The isotropic defect core has a radius of the order of one particle length and is surrounded by free-standing density oscillations. The effective interaction between two defects is investigated. All results should be experimentally observable in thin sheets of colloidal liquid crystals.
We present computer simulations of long thin hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is i
Topological defects are one of the most conspicuous features of liquid crystals. In two dimensional nematics, they have been shown to behave effectively as particles with both, charge and orientation, which dictate their interactions. Here, we study
Hard spherocylinders (cylinders of length $L$ and diameter $D$ capped at both ends with two hemispheres) provide a suitable model for investigating entropy-driven, mesophase formations in real colloidal fluids that are composed of rigid rodlike molec
We investigated the nematic to smectic transition undergone by parallel hard spherocylinders in the framework provided by the residual multi-particle entropy (RMPE) formalism. The RMPE is defined as the sum of all contributions to the configurational
We report numerical calculations of the concentration of interstitials in hard-sphere crystals. We find that, in a three-dimensional fcc hard-sphere crystal at the melting point, the concentration of interstitials is 2 * 10^-8. This is some three ord