ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical spectroscopic study of the interplay of spin and charge in NaV2O5

66   0   0.0 ( 0 )
 نشر من قبل Andrea Damascelli
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Damascelli




اسأل ChatGPT حول البحث

We investigate the temperature dependent optical properties of NaV2O5, in the energy range 4meV-4eV. The symmetry of the system is discussed on the basis of infrared phonon spectra. By analyzing the optically allowed phonons at temperatures below and above the phase transition, we conclude that a second-order change to a larger unit cell takes place below 34 K, with a fluctuation regime extending over a broad temperature range. In the high temperature undistorted phase, we find good agreement with the recently proposed centrosymmetric space group Pmmn. On the other hand, the detailed analysis of the electronic excitations detected in the optical conductivity, provides direct evidence for a charge disproportionated electronic ground-state, at least on a locale scale: A consistent interpretation of both structural and optical conductivity data requires an asymmetrical charge distribution on each rung, without any long range order. We show that, because of the locally broken symmetry, spin-flip excitations carry a finite electric dipole moment, which is responsible for the detection of direct two-magnon optical absorption processes for E parallel to the a axis. The charged-magnon model, developed to interpret the optical conductivity of NaV2O5, is described in detail, and its relevance to other strongly correlated electron systems, where the interplay of spin and charge plays a crucial role in determining the low energy electrodynamics, is discussed.

قيم البحث

اقرأ أيضاً

Infrared reflectance of alpha-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in the range of 1D magnetic excitation energies was found. The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with vanishing intensity in c-polarisation. Activation of new phonons due to the lattice dimerisation were detected below 35K as well as pretransitional structural fluctuations up to 65K.
132 - H. Nakao 2000
Charge ordering of V4+ and V5+ in NaV2O5 has been studied by an X-ray diffraction technique using anomalous scattering near a vanadium K-absorption edge to critically enhance a contrast between the two ions. A dramatic energy dependence of the superl attice intensities is observed below Tc=35 K. Consequently, the charge ordering pattern is the zigzag-type ladders with the unit cell 2a*2b*4c, but not the chain-type originally proposed for the spin-Peierls state. Charge disproportionation suggested in our model as the average valence V^{4.5+-delta_c/2} is observed below T_C, showing continuous variation of delta_c as a function of temperature.
Polarized infrared reflectivity measurements have been performed on single crystals of the spin-Peierls compound alpha-NaV2O5 in the temperature range 20-300 K. Pronounced spectral features associated with the formation of the dimerized phase were de tected both in the a- and b-polarizations (perpendicular and parallel to the spin-1/2 chains, respectively). The temperature dependence of a salient spectral line at 718 cm^-1 sharply rising below the transition temperature T_SP obeys a (1-T/T_SP)^(2beta) law with T_SP simeq 34.3$K and beta simeq 0.25. In addition, a continuum signal is observed in the whole temperature range in the a-polarized optical conductivity spectra. In order to interpret these results, calculations of the static dimerization and of the optical conductivity based on a mean-field and a dynamical treatment of the lattice respectively are proposed.
We present the temperature dependence of shear and longitudinal elastic constants in a-NaV2O5. For the longitudinal c22 and c33 modes we find anomalies at Tc in contrast to the Spin Peierls substance CuGeO3 where only the longitudinal mode along the chain shows a pronounced effect at TSP. The c66 shear mode (propagation along the chain in b-direction polarization in a-direction) shows strong softening of 12%. Such a large effect is absent for all shear modes in CuGeO3. We can interpret this softening with a coupling of the exy symmetry strain to the charge fluctuation of B1g symmetry. We give the possible low temperature charge distribution.
129 - B. Xu , P. Marsik , S. Sarkar 2021
We report an infrared spectroscopy study of the axion topological insulator candidate EuIn$_2$As$_2$ for which the Eu moments exhibit an A-type antiferromagnetic (AFM) order below $T_N simeq 18 mathrm{K}$. The low energy response is composed of a wea k Drude peak at the origin, a pronounced infrared-active phonon mode at 185 cm$^{-1}$ and a free carrier plasma edge around 600 cm$^{-1}$. The interband transitions start above 800 cm$^{-1}$ and give rise to a series of weak absorption bands at 5,000 and 12,000 cm$^{-1}$ and strong ones at 20,000, 27,500 and 32,000 cm$^{-1}$. The AFM transition gives rise to pronounced anomalies of the charge response in terms of a cusp-like maximum of the free carrier scattering rate around $T_N$ and large magnetic splittings of the interband transitions at 5,000 and 12,000 cm$^{-1}$. The phonon mode at 185 cm$^{-1}$ has also an anomalous temperature dependence around $T_N$ which suggests that it couples to the fluctuations of the Eu spins. The combined data provide evidence for a strong interaction amongst the charge, spin and lattice degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا