ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a Nanoscale Metallic Dot Self-Consistently Coupled to a Two-Level System

129   0   0.0 ( 0 )
 نشر من قبل Ned S. Wingreen
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed anomalous transport properties for a 50 nm Bi dot in the Coulomb-blockade regime. Over a range of gate voltages, Coulomb blockade peaks are suppressed at low bias, and dramatic structure appears in the current at higher bias. We propose that the state of the dot is determined self-consistently with the state of a nearby two-level system (TLS) to which it is electrostatically coupled. As a gate voltage is swept, the ground state alternates between states of the TLS, leading to skipped Coulomb-blockade peaks at low bias. At a fixed gate voltage and high bias, transport may occur through a cascade of excited states connected by the dynamic switching of the TLS.



قيم البحث

اقرأ أيضاً

The problem of Rabi oscillations in a qubit coupled to a fluctuator and in contact with a heath bath is considered. A scheme is developed for taking into account both phase and energy relaxation in a phenomenological way, while taking full account of the quantum dynamics of the four-level system subject to a driving AC field. Significant suppression of the Rabi oscillations is found when the qubit and fluctuator are close to resonance. The effect of the fluctuator state on the read-out signal is discussed. This effect is shown to modify the observed signal significantly. This may be relevant to recent experiments by Simmonds et al. [Phys. Rev. Lett. 93, 077003 (2004)].
We present an off-resonant excitation scheme that realizes pronounced stationary inversion in a two level system. The created inversion exploits a cavity-assisted two photon resonance to enhance the multi-photon regime of nonlinear cavity QED and sur vives even in a semiconductor environment, where the cavity decay rate is comparable to the cavity-dot coupling rate. Exciton populations of greater than 0.75 are obtained in the presence of realistic decay and pure dephasing. Quantum trajectory simulations and quantum master equation calculations help elucidate the underlying physics and delineate the limitations of a simplified rate equation model. Experimental signatures of inversion and multi-photon cavity QED are predicted in the fluorescence intensity and second-order correlation function measured as a function of drive power.
We investigate experimentally an exotic state of electronic matter obtained by fine-tuning to a quantum critical point (QCP), realized in a spin-polarized resonant level coupled to strongly dissipative electrodes. Several transport scaling laws near and far from equilibrium are measured, and then accounted for theoretically. Our analysis reveals a splitting of the resonant level into two quasi-independent Majorana modes, one strongly hybridized to the leads, and the other tightly bound to the quantum dot. Residual interactions involving these Majorana fermions result in the observation of a striking quasi-linear non-Fermi liquid scattering rate at the QCP. Our devices constitute a viable alternative to topological superconductors as a platform for studying strong correlation effects within Majorana physics.
In this paper we review the theory of open quantum systems and macroscopic quantum electrodynamics, providing a self-contained account of many aspects of these two theories. The former is presented in the context of a qubit coupled to a electromagnet ic thermal bath, the latter is presented in the context of a quantization scheme for surface-plasmon polaritons (SPPs) in graphene based on Langevin noise currents. This includes a calculation of the dyadic Greens function (in the electrostatic limit) for a Graphene sheet between two semi-infinite linear dieletric media, and its subsequent application to the construction of SPP creation and annihilation operators. We then bring the two fields together and discuss the entanglement of two qubits in the vicinity of a graphene sheet which supports SPPs. The two qubits communicate with each other via the emission and absorption of SPPs. We find that a Schodinger cat state involving the two qubits can be partially protected from decoherence by taking advantage of the dissipative dynamics in graphene. A comparison is also drawn between the dynamics at zero temperature, obtained via Schrodingers equation, and at finite temperature, obtained using the Lindblad equation.
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is u sed to generate a cavity enhanced optical Stark shift, enabling the QD to be resonantly tuned to the other cavity mode. A twenty-seven fold increase in photon emission from the QD is measured when the off-resonant QD is Stark shifted into the cavity mode resonance, which is attributed to radiative enhancement of the QD. A maximum tuning of 0.06 nm is achieved for the QD at an incident power of 88 {mu}W.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا