ﻻ يوجد ملخص باللغة العربية
It was recently claimed that on d-dimensional small-world networks with a density p of shortcuts, the typical separation s(p) ~ p^{-1/d} between shortcut-ends is a characteristic length for shortest-paths{cond-mat/9904419}. This contradicts an earlier argument suggesting that no finite characteristic length can be defined for bilocal observables on these systems {cont-mat/9903426}. We show analytically, and confirm by numerical simulation, that shortest-path lengths ell(r) behave as ell(r) ~ r for r < r_c, and as ell(r) ~ r_c for r > r_c, where r is the Euclidean separation between two points and r_c(p,L) = p^{-1/d} log(L^dp) is a characteristic length. This shows that the mean separation s between shortcut-ends is not a relevant length-scale for shortest-paths. The true characteristic length r_c(p,L) diverges with system size L no matter the value of p. Therefore no finite characteristic length can be defined for small-world networks in the thermodynamic limit.
We study the thermodynamic properties of spin systems on small-world hypergraphs, obtained by superimposing sparse Poisson random graphs with p-spin interactions onto a one-dimensional Ising chain with nearest-neighbor interactions. We use replica-sy
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble
Mapping a complex network to an atomic cluster, the Anderson localization theory is used to obtain the load distribution on a complex network. Based upon an intelligence-limited model we consider the load distribution and the congestion and cascade f
We calculate the number of metastable configurations of Ising small-world networks which are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We