ﻻ يوجد ملخص باللغة العربية
In view of the recently seen dramatic effect of quenched random bonds on tricritical systems, we have conducted a renormalization-group study on the effect of quenched random fields on the tricritical phase diagram of the spin-1 Ising model in $d=3$. We find that random fields convert first-order phase transitions into second-order, in fact more effectively than random bonds. The coexistence region is extremely flat, attesting to an unusually small tricritical exponent $beta_u$; moreover, an extreme asymmetry of the phase diagram is very striking. To accomodate this asymmetry, the second-order boundary exhibits reentrance.
We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case the accumulated distance travel
The recent proliferation of correlated percolation models---models where the addition of edges/vertices is no longer independent of other edges/vertices---has been motivated by the quest to find discontinuous percolation transitions. The leader in th
We construct a dynamical field theory for noninteracting Brownian particles in the presence of a quenched Gaussian random potential. The main variable for the field theory is the density fluctuation which measures the difference between the local den
Kinetic Ising models are powerful tools for studying the non-equilibrium dynamics of complex systems. As their behavior is not tractable for large networks, many mean-field methods have been proposed for their analysis, each based on unique assumptio
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states $q=3,4$ in $d$ dimensions. We us