ﻻ يوجد ملخص باللغة العربية
Some recent developments in the study of exactly solved lattice models in statistical mechanics are briefly reviewed. These include work with Debbie Bennett-Wood and Aleks Owczarek on polymers at surfaces (cond-mat/9805148) and with Katherine Seaton on the calculation of correlation lengths and the E_8 mass spectrum of the dilute A_3 lattice model (hep-th/9712121).
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the paralle
The mixed spin-(1/2, 1) Ising model on two fully frustrated triangles-in-triangles lattices is exactly solved with the help of the generalized star-triangle transformation, which establishes a rigorous mapping correspondence with the equivalent spin-
We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special crossing symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transf
The ground state and magnetization process of the mixed spin-(1,1/2) Ising diamond chain is exactly solved by employing the generalized decoration-iteration mapping transformation and the transfer-matrix method. The decoration-iteration transformatio
The J$_1$-J$_2$ Ising model in the square lattice in the presence of an external field is studied by two approaches: the Cluster Variation Method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence