ﻻ يوجد ملخص باللغة العربية
We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.
We report on numerical procedures for, and preliminary results on the search for, tunnelling centres in Lennard-Jones clusters, seen as simple model systems of glasses. Several of the double-well potentials identified are good candidates to give rise
The phase diagram of the prototypical two-dimensional Lennard-Jones system, while extensively investigated, is still debated. In particular, there are controversial results in the literature as concern the existence of the hexatic phase and the melti
A relation $mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ between the set of non-isomorphic sticky hard sphere clusters $mathcal{M}_mathrm{SHS}$ and the sets of local energy minima $mathcal{M}_{LJ}$ of the $(m,n)$-Lennard-Jones potential $V^mathrm{LJ}_{mn}(r
We present a systematic study of the thermodynamics of two and three-dimensional generalized Lennard-Jones ($LJ$) systems focusing on the relationship between the range of the potential, the system density and its dimension. We found that the existen
We present a new theoretical framework for modelling the fusion process of Lennard-Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster