ترغب بنشر مسار تعليمي؟ اضغط هنا

Precursor phenomena in frustrated systems

62   0   0.0 ( 0 )
 نشر من قبل Giancarlo Franzese
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To understand the origin of the dynamical transition, between high temperature exponential relaxation and low temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in presence of disorder) or fully frustrated Ising (in absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.



قيم البحث

اقرأ أيضاً

Keywords: nonequilibirum phenomena; diffusion in confined systems; dynamics and relaxation in confined systems; entropic transport in confined systems; ion and polymer translocation; forces induced by fluctuations; confined active mater; macromolecular crowding.
We propose a new method for the determination of the weight factor for the simulated tempering method. In this method a short replica-exchange simulation is performed and the simulated tempering weight factor is obtained by the multiple-histogram rew eighting techniques. The new algorithm is particularly useful for studying frustrated systems with rough energy landscape where the determination of the simulated tempering weight factor by the usual iterative process becomes very difficult. The effectiveness of the method is illustrated by taking an example for protein folding.
We analyze the universal features of the critical behaviour of frustrated spin systems with noncollinear order. By means of the field theoretical renormalization group approach, we study the 3d model of a frustrated magnet and obtain pseudo-epsilon e xpansions for its universal order parameter marginal dimensions. These dimensions govern accessibility of the renormalization group transformation fixed points, and, hence, define the scenario of the phase transition.
This article gives a short description of pattern formation and coarsening phenomena and focuses on recent experimental and theoretical advances in these fields. It serves as an introduction to phase ordering kinetics and it will appear in the specia l issue `Coarsening dynamics, Comptes Rendus de Physique, edited by F. Corberi and P. Politi.
The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researche rs have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا