ﻻ يوجد ملخص باللغة العربية
We present results from magnetic resonance measurements for 75-350 GHz in $alpha$-NaV$_{2}$O$_{5}$. The temperature dependence of the integrated intensity indicates that we observe transitions in the excited state. A quantitative description gives resonances in the triplet state at high symmetry points of the excitation spectrum of this Spin-Peierls compound. This energy has the same temperature dependence as the Spin-Peierls gap. Similarities and differences with the other inorganic compound CuGeO$_{3}$ are discussed.
Infrared reflectance of alpha-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in
At room-temperature NaV2O5 was found to have the centrosymmetric space group Pmmn. This space group implies the presence of only one kind of V site in contrast with previous reports of the non-centrosymmetric counterpart P21mn. This indicates a non-i
Polarized far-infrared (FIR) spectroscopic measurements and FIR magneto-optical studies were performed on the inorganic spin-Peierls compound CuGeO_3. An absorption line, which was found at 98 cm$^{-1}$ in the dimerized phase (D phase), was assigned
We argue that in the quarter-filled ladder compound NaV_2O_5 the quasi-one-dimensional spin system is strongly coupled to a low-energy antiferroelectric mode of the excitonic type. This mode results from the interplay between the electron hopping alo
We present a detailed analysis of light scattering experiments performed on the quarter-filled spin ladder compound $alpha^prime$-NaV$_{2}$O$_{5}$ for the temperature range 5 K$le$T$le$300 K. This system undergoes a phase transition into a singlet gr