ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors

107   0   0.0 ( 0 )
 نشر من قبل Stephen Hayden
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-$T_c$ superconducting systems La$_{2-x}$Sr$_{x}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6+x}$. Experiments were performed using the chopper spectrometers HET and MARI at the ISIS spallation source. We have placed our measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. We find that the insulating S=1/2 antiferromagnetic parent compounds show a dramatic renormalization of the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in the frequency spectrum.

قيم البحث

اقرأ أيضاً

97 - Louis Taillefer 2009
The recent observation of quantum oscillations in underdoped high-Tc superconductors, combined with their negative Hall coefficient at low temperature, reveals that the Fermi surface of hole-doped cuprates includes a small electron pocket. This stron gly suggests that the large hole Fermi surface characteristic of the overdoped regime undergoes a reconstruction caused by the onset of some order which breaks translational symmetry. Here we consider the possibility that this order is stripe order, a form of charge / spin modulation observed most clearly in materials like Eu-doped and Nd-doped LSCO. In these materials, the onset of stripe order is indeed the cause of Fermi-surface reconstruction. We identify the critical doping where this reconstruction occurs and show that the temperature dependence of transport coefficients at that doping is typical of metals at a quantum critical point. We discuss how the pseudogap phase may be a fluctuating precursor of the stripe-ordered phase.
Local antiferromagnetism coexists with superconductivity in the cuprates. Charge segregation provides a way to reconcile these properties. Direct evidence for modulated spin and charge densities has been found in neutron and X-ray scattering studies of Nd-doped La(2-x)Sr(x)CuO(4). Here we discuss the nature of the modulation, and present some new results for a Zn-doped sample. Some of the open questions concerning the connections between segregation and superconductivity are described.
We report on successful synthesis under high pressure of a series of polycrystalline GdFeAs O_{1-x}F_x high-Tc superconductors with different oxygen deficiency x=0.12 - 0.16 and also with no fluorine. We have found that the high-pressure synthesis te chnique is crucial for obtaining almost single-phase superconducting materials: by synthesizing the same compounds with no pressure in ampoules we obtained non-superconducting materials with an admixture of incidental phases. Critical temperature for all the materials was in the range 40 to 53K. The temperature derivative of the critical field dHc2/dT is remarkably high, indicating potentially high value of the second critical field Hc2 ~ 130T.
We survey recent experimental results including quantum oscillations and complementary measurements probing the electronic structure of underdoped cuprates, and theoretical proposals to explain them. We discuss quantum oscillations measured at high m agnetic fields in the underdoped cuprates that reveal a small Fermi surface section comprising quasiparticles that obey Fermi-Dirac statistics, unaccompanied by other states of comparable thermodynamic mass at the Fermi level. The location of the observed Fermi surface section at the nodes is indicated by a body of evidence including the collapse in Fermi velocity measured by quantum oscillations, which is found to be associated with the nodal density of states observed in angular resolved photoemission, the persistence of quantum oscillations down to low fields in the vortex state, the small value of density of states from heat capacity and the multiple frequency quantum oscillation pattern consistent with nodal magnetic breakdown of bilayer-split pockets. A nodal Fermi surface pocket is further consistent with the observation of a density of states at the Fermi level concentrated at the nodes in photoemission experiments, and the antinodal pseudogap observed by photoemission, optical conductivity, nuclear magnetic resonance Knight shift, as well as other complementary diffraction, transport and thermodynamic measurements. One of the possibilities considered is that the small Fermi surface pockets observed at high magnetic fields can be understood in terms of Fermi surface reconstruction by a form of small wavevector charge order, observed over long lengthscales in experiments such as nuclear magnetic resonance and x-ray scattering, potentially accompanied by an additional mechanism to gap the antinodal density of states.
A quarter of a century after their discovery the mechanism that pairs carriers in the cuprate high-Tc superconductors (HTS) still remains uncertain. Despite this the general consensus is that it is probably magnetic in origin [1] so that the energy s cale for the pairing boson is governed by J, the antiferromagnetic exchange interaction. Recent studies using resonant inelastic X-ray scattering strongly support these ideas [2]. Here as a further test we vary J (as measured by two-magnon Raman scattering) by more than 60% by changing ion sizes in the model HTS system LnA2Cu3O7-{delta} where A=(Ba,Sr) and Ln=(La, Nd, Sm, Eu, Gd, Dy, Yb, Lu). Such changes are often referred to as internal pressure. Surprisingly, we find Tcmax anticorrelates with J where internal pressure is the implicit variable. This is the opposite to the effect of external pressure and suggests that J is not the dominant energy scale governing Tcmax.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا