ﻻ يوجد ملخص باللغة العربية
Using the method of energy-level statistics, the localization properties of electrons moving in two dimensions in the presence of a perpendicular random magnetic field and additional random disorder potentials are investigated. For this model, extended states have recently been proposed to exist in the middle of the band. In contrast, from our calculations of the large-$s$ behavior of the nearest neighbor level spacing distribution $P(s)$ and from a finite size scaling analysis we find only localized states in the suggested energy and disorder range.
The longitudinal resistivity of two dimensional (2D) electrons placed in strong magnetic field is significantly reduced by applied electric field, an effect which is studied in a broad range of magnetic fields and temperatures in GaAs quantum wells w
We study level statistics of a critical random matrix ensemble of a power-law banded complex Hermitean matrices. We compute numerically the level compressibility via the level number variance and compare it with the analytical formula for the exactly solvable model of Moshe, Neuberger and Shapiro.
This paper provides a review of developments in the physics of two-dimensional electron systems in perpendicular magnetic fields.
We develop a comprehensive theory for the effective dynamics of Bloch electrons based on symmetry. We begin with a scheme to systematically derive the irreducible representations (IRs) characterizing the Bloch functions. Starting from a tight-binding
We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$