ﻻ يوجد ملخص باللغة العربية
We propose a selfconsistent microscopic model of vertical sequential tunneling through a multi-quantum well.The model includes a detailed description of the contacts,uses the Transfer Hamiltonian for expressions of the current and it treats the Coulomb interaction within a mean field approximation. We analyze the current density through a double well and a superlattice and study the formation of electric field domains and multistability coming from the Coulomb interaction. Phase diagrams of parameter regions (bias, doping in the heterostructure and in the contacts,etc) where the different solutions exist are given.
We provide a microscopic theory for the Doppler velocimetry of spin propagation in the presence of spatial inhomogeneity, driving electric field and the spin orbit coupling in semiconductor quantum wells in a wide range of temperature regime based on
MiTMoJCo (Microscopic Tunneling Model for Josephson Contacts) is C code which aims to assist modeling of superconducting Josephson contacts based on the microscopic tunneling theory. The code offers implementation of a computationally demanding part
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
A model of sequential resonant tunneling transport between two-dimensional subbands that takes into account explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum cascade lasers where resonant tun
We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis ev