ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity to Initial Conditions and Nonextensivity in Biological Evolution

287   0   0.0 ( 0 )
 نشر من قبل Francisco Antonio Tamarit
 تاريخ النشر 1996
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider biological evolution as described within the Bak and Sneppen 1993 model. We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions, calculate the associated exponent, and relate it to the recently introduced nonextensive thermostatistics. The scenario which here emerges without tuning strongly reminds that of the tuned onset of chaos in say logistic-like onedimensional maps. We also calculate the dynamical exponent z.

قيم البحث

اقرأ أيضاً

144 - U. Tirnakli , M.L. Lyra 2002
The short-time and long-time dynamics of the Bak-Sneppen model of biological evolution are investigated using the damage spreading technique. By defining a proper Hamming distance measure, we are able to make it exhibits an initial power-law growth w hich, for finite size systems, is followed by a decay towards equilibrium. In this sense, the dynamics of self-organized critical states is shown to be similar to the one observed at the usual critical point of continuous phase-transitions and at the onset of chaos of non-linear low-dimensional dynamical maps. The transient, pre-asymptotic and asymptotic exponential relaxation of the Hamming distance between two initially uncorrelated equilibrium configurations is also shown to be fitted within a single mathematical framework. A connection with nonextensive statistical mechanics is exhibited.
Since the Time-Dependent Density Functional Theory is mathematically formulated through non-linear coupled time-dependent 3-dimensional partial differential equations it is natural to expect a strong sensitivity of its solutions to variations of the initial conditions, akin to the butterfly effect ubiquitous in classical dynamics. Since the Schrodinger equation for an interacting many-body system is however linear and (mathematically) the exact equations of the Density Functional Theory reproduce the corresponding one-body properties, it would follow that the Lyapunov exponents are also vanishing within a Density Functional Theory framework. Whether for realistic implementations of the Time-Dependent Density Functional Theory the question of absence of the butterfly effect and whether the dynamics provided is indeed a predictable theory was never discussed. At the same time, since the time-dependent density functional theory is a unique tool allowing us the study of non-equilibrium dynamics of strongly interacting many-fermion systems, the question of predictability of this theoretical framework is of paramount importance. Our analysis, for a number of quantum superfluid any-body systems (unitary Fermi gas, nuclear fission, and heavy-ion collisions) with a classical equivalent number of degrees of freedom ${cal O}(10^{10})$ and larger, suggests that its maximum Lyapunov are negligible for all practical purposes.
The sensitivity to initial conditions and relaxation dynamics of two-dimensional maps are analyzed at the edge of chaos, along the lines of nonextensive statistical mechanics. We verify the dual nature of the entropic index for the Henon map, one ($q _{sen}<1$) related to its sensitivity to initial conditions properties, and the other, graining-dependent ($q_{rel}(W)>1$), related to its relaxation dynamics towards its stationary state attractor. We also corroborate a scaling law between these two indexes, previously found for $z$-logistic maps. Finally we perform a preliminary analysis of a linearized version of the Henon map (the smoothed Lozi map). We find that the sensitivity properties of all these $z$-logistic, Henon and Lozi maps are the same, $q_{sen}=0.2445...$
123 - G. S. Franc{c}a 2006
Geological fault systems, as the San Andreas fault (SAF) in USA, constitute typical examples of self-organizing systems in nature. In this paper, we have considered some geophysical properties of the SAF system to test the viability of the nonextensi ve models for earthquakes developed in [Phys. Rev. E {bf 73}, 026102, 2006]. To this end, we have used 6188 earthquakes events ranging in the magnitude interval $2 < m < 8$ that were taken from the Network Earthquake International Center catalogs (NEIC, 2004-2006) and the Bulletin of the International Seismological Centre (ISC, 1964-2003). For values of the Tsallis nonextensive parameter $q simeq 1.68$, it is shown that the energy distribution function deduced in above reference provides an excellent fit to the NEIC and ISC SAF data.
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each sit e sampled independently from a certain distribution, and then one particle is activated to begin the process. We show that the recurrence or transience of the model is sensitive not just to the expectation but to the entire distribution. This is in contrast to closely related models like branching random walk and activated random walk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا