ﻻ يوجد ملخص باللغة العربية
We study a three species monomer-monomer catalytic surface reaction model with a reactive steady state bordered by three equivalent unreactive phases where the surface is saturated with one species. The transition from the reactive to a saturated phase shows directed percolation critical behavior. Each pair of these reactive-saturated phase boundaries join at a bicritical point where the universal behavior is in the even branching annihilating random walk class. We find the crossover exponent from bicritical to critical behavior and a new exponent associated with the bicritical interface dynamics.
We solve the monomer-dimer problem on a non-bipartite lattice, the simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the non-bipartite nature of the lattice, the well-known method of a
We present a unified scaling theory for the dynamics of monomers for dilute solutions of semiflexible polymers under good solvent conditions in the free draining limit. Our theory encompasses the well-known regimes of mean square displacements (MSDs)
We study the number of dimer-monomers $M_d(n)$ on the Tower of Hanoi graphs $TH_d(n)$ at stage $n$ with dimension $d$ equal to 3 and 4. The entropy per site is defined as $z_{TH_d}=lim_{v to infty} ln M_d(n)/v$, where $v$ is the number of vertices on
Using molecular dynamics simulation of a standard bead-spring model we investigate the density crossover scaling of strictly two-dimensional self-avoiding polymer chains focusing on properties related to the contact exponent set by the intrachain sub
Protein assembly plays an important role throughout all phyla of life, both physiologically and pathologically. In particular, aggregation and polymerization of proteins are key-strategies that regulate cellular function. In recent years, methods to