ﻻ يوجد ملخص باللغة العربية
Infrared reflectivity measurements, using p-polarized light at a grazing angle of incidence, show an increased sensitivity to the optical conductivity of highly reflecting superconducting materials. We demonstrate that when this measurement technique is applied to the conventional s-wave superconductor NbN, the results are in perfect agreement with BCS theory. For the in-plane response of a La$_{1.85}$Sr$_{0.15}$CuO$_4$ single crystal, in the superconducting state, we find a reduction of the optical conductivity in the frequency range below 20 meV. The observed frequency dependence excludes an isotropic s-wave gap, but agrees well with model calculations assuming a d-wave order parameter.
We study superconducting properties in multilayer thin films consisting of superconducting La$_{1.85}$Sr$_{0.15}$CuO$_4$ (LSCO) and Mott insulator Sr$_2$IrO$_4$ (SIO) and report enhanced superconductivity in optimized sample. These multilayer heteros
Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd$_te
Impurity effects of Zn and Ni on the low-energy spin excitations were systematically studied in optimally doped La1.85Sr0.15Cu1-yAyO4 (A=Zn, Ni) by neutron scattering. Impurity-free La1.85Sr0.15CuO4 shows a spin gap of 4meV below Tc in the antiferrom
The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character d
Local lattice structures of La$_{1.85}$Sr$_{0.15}$Cu$_{1-x}$M$_x$O$_4$ (M=Mn, Ni, and Co) single crystals are investigated by polarized extended x-ray absorption fine structure (EXAFS). The local lattice instability at low temperature is described by