ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain Effect on Energy Gaps of Armchair Graphene Nanoribbons

317   0   0.0 ( 0 )
 نشر من قبل Li Qunxiang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a first-principles study on electronic structures of the deformed armchair graphene nanoribbons (AGNRs). The variation of the energy gap of AGNRs as a function of uniaxial strain displays a zigzag pattern, which indicates that the energy gaps of AGNRs can be effectively tuned. The spatial distributions of two occupied and two empty subbands close to the Fermi level are swapped under different strains. The tunable width of energy gaps becomes narrower as increasing the width of AGNRs. Our simulations with tight binding approximation, including the nearest neighbor hopping integrals between $pi$- orbitals of carbon atoms, reproduce these results by first-principles calculations. One simple empirical formula is obtained to describe the scaling behavior of the maximal value of energy gap as a function of the width of AGNRs.


قيم البحث

اقرأ أيضاً

103 - Hao Ren , Qunxiang Li , Haibin Su 2007
In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical res ults show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This property change of AGNRs (from semiconducting to metallic) is important in developing graphene-based devices.
Transport measurements on an etched graphene nanoribbon are presented. It is shown that two distinct voltage scales can be experimentally extracted that characterize the parameter region of suppressed conductance at low charge density in the ribbon. One of them is related to the charging energy of localized states, the other to the strength of the disorder potential. The lever arms of gates vary by up to 30% for different localized states which must therefore be spread in position along the ribbon. A single-electron transistor is used to prove the addition of individual electrons to the localized states. In our sample the characteristic charging energy is of the order of 10 meV, the characteristic strength of the disorder potential of the order of 100 meV.
Molybdenum disulfide (MoS2) is layered transition-metal dichalcogenide (TMDC), which in its monolayer form, has the direct bandgap of 1.8 eV. We investigated the effect of width and strain on quantum transport for MoS2 armchair nanoribbons. That indi cates MoS2 armchair nanoribbons are a good candidate for transistors even with strain.
We extensively characterize the electronic structure of ultra-narrow graphene nanoribbons (GNRs) with armchair edges and zig-zag termini that have 5 carbon atoms across their width (5-AGNRs), as synthesised on Au(111). Scanning tunnelling spectroscop y measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localised at the zig-zag termini of the nanoribbons. Besides rationalising the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behaviour of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.
We report on the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4-dibromo-para-terphenyl as molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbons band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in graphene nanoribbon-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbates band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا