ﻻ يوجد ملخص باللغة العربية
The quadrupole interaction at 111Cd impurity nuclei in the intermediate-valence compound YbAl2 has been measured under pressure up to 80 kbar by the TDPAC spectroscopy. It was found that the quadrupole frequency nQ measured on the 111Cd located at the Al sites in YbAl2, varies nonlinearly and increases by almost four times with the pressure increase up to 80 kbar. A linear correlation between the mean Yb valence, derived from Yb L3 OFY-XAS and RXES measurements, and the electric field gradient (the quadrupole frequency nQ=eQVzz/h) has been observed. The quadrupole frequencies on 111Cd in the GdAl2, YbAl3, TmAl3 and CaAl2 compounds have been measured, also. The possibility of determining the valence of Yb in the Yb compounds with p-metals from the relation nQ (u(P)) = n2 + (n3 - n2) u(P) has been considered.
The nuclear quadrupole interaction of the I=5/2 state of the nuclear probes 111Cd and 181Ta in the anatase and rutile polymorphs of bulk TiO2 was studied using the time differential perturbed angular correlation (TDPAC). The fast-slow coincidence set
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear disp
We report the high-pressure synthesis of novel superconductor MgB$_2$ and some related compounds. The superconducting transition temperature of our samples of MgB$_2$ is equal to 36.6 K. The MgB$_2$ lattice parameters determined via X-ray diffraction
Recent progress in understanding the electronic band topology and emergent topological properties encourage us to reconsider the band structure of well-known materials including elemental substances. Controlling such a band topology by external field
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskite