ﻻ يوجد ملخص باللغة العربية
We report the first measurements of the dynamics of liquid germanium (l-Ge) by quasi-elastic neutron scattering on time-of-flight and triple-axis spectrometers. These results are compared with simulation data of the structure and dynamics of l-Ge which have been obtained with ab initio density functional theory methods. The simulations accurately reproduce previous results from elastic and inelastic scattering experiments, as well as the q-dependence of the width of the quasi-elastic signal of the new experimental data. In order to understand some special features of the structure of the liquid we have also simulated amorphous Ge. Overall we find that the atomistic model represents accurately the average structure of real l-Ge as well as the time dependent structural fluctuations. The new quasi-elastic neutron scattering data allows us to investigate to what extent simple theoretical models can be used to describe diffusion in l-Ge.
We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS data show that the Na atoms undergo localized jumps up
A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D an
We have performed quasielastic neutron scattering (QENS) experiments up to 1243 K and ab-initio molecular dynamics (AIMD) simulations to investigate the Na diffusion in various phases of NaAlSiO4 (NASO), namely, low-carnegieite (L-NASO; trigonal), hi
We present the results of first-principles molecular-dynamics simulations of molten silicates, based on the density functional formalism. In particular, the structural properties of a calcium aluminosilicate $ [$ CaO-Al$_2$O$_3$-SiO$_2$ $ ]$ melt are
We extend the ab initio molecular dynamics (AIMD) method based on density functional theory to the nonequilibrium situation where an electronic current is present in the electronic system. The dynamics is treated using the semi-classical generalized