ترغب بنشر مسار تعليمي؟ اضغط هنا

Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields

65   0   0.0 ( 0 )
 نشر من قبل Philippe Vanderbemden
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crossed magnetic field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed) magnetic field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O (YBCO) single domains that had been pre-magnetized with the applied field parallel to their shortest direction (i.e. the c-axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pick-up coils, a Hall probe placed against the sample surface and Magneto-Optical Imaging (MOI). We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross-section. It is also shown that the model does not predict any saturation of the magnetic induction, even after a large number (~ 100) of transverse field cycles. These features are shown to be consistent with the experimental data.

قيم البحث

اقرأ أيضاً

59 - Krzysztof Rogacki 2003
In this article, we examine the superconducting properties of low- and high-$T_c$ magnetic superconductors in magnetic fields close to the first penetration field. Attention is paid to the properties that relate to the interactions between antiferrom agnetism and superconductivity. It is suggested that several features characterizing the interplay between magnetic and superconducting subsystems in low-$T_c$ superconductors can also be present in high-$T_c$ materials, however, they have not been observed for any non-substituted antiferromagnetic superconductors of the Y123 type. For the Gd$_{1+x}$Ba$_{2-x}$Cu$_3$O$_{7-delta}$ compound, a peak in the temperature dependence of the ac susceptibility has been found for $x = 0.2$ near the N{e}el temperature of the Gd sublattice. This peak is attributed to the suppression of superconducting persistent currents due to the pair breaking effect that results from the enhanced magnetic fluctuations in the vicinity of the phase transition temperature. This observation indicates that the interaction between magnetic and conducting electrons is present for the composition with $x = 0.2$, where magnetism is enhanced and superconductivity diminished.
99 - S. Kleefisch 2001
We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneli ng spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.
188 - Y. H. Su , H. G. Luo , 2005
We propose and show that the c-axis transport in high-temperature superconductors is controlled by the pseudogap energy and the c-axis resistivity satisfies a universal scaling law in the pseudogap phase. We derived approximately a scaling function f or the c-axis resistivity and found that it fits well with the experimental data of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+delta}$, and YBa$_2$Cu$_3$O$_{7-delta}$. Our works reveals the physical origin of the semiconductor-like behavior of the c-axis resistivity and suggests that the c-axis hopping is predominantly coherent.
Inhomogeneous distribution of the pinning force in superconductor results in a magnetization asymmetry. A model considering the field distribution in superconductor was developed and symmetric and asymmetric magnetization loops of porous and textured Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_{2}Cu_{3}O_{x} were fitted. It is found that the thermal equilibrium magnetization realizes in crystals smaller than some size depending on temperature and magnetic field.
A magnetic field relaxation at the center of a pulse-magnetized single-domain Y-Ba-Cu-O superconductor at 78K has been studied. In case of a weak magnetization, the magnetic flux density increases logarithmically and normalized relaxation rate define d as S=-d(lnB)/d(lnt) is negative (S=-0.037). When an external magnetic field magnitude increases, the relaxation rate first decreases in absolute value, then changes sign (becomes positive, S>0) and after reaching some maximum finally reduces to a very small value. Non-monotonous dependence of S vs Ha is explained by a non-homogeneous local temperature distribution during a pulse magnetization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا