ﻻ يوجد ملخص باللغة العربية
Controllable adiabatic evolution of a multi-qubit system can be used for adiabatic quantum computation (AQC). This evolution ends at a configuration where the Hamiltonian of the system encodes the solution of the problem to be solved. As a first steps towards realization of AQC we have investigated two, three and four flux qubit systems. These systems were characterized by making use of a radio-frequency method. We designed two-qubit systems with coupling energies up to several kelvins. For the three-flux-qubit systems we determined the complete ground-state flux diagram in the three dimensional flux space around the qubits common degeneracy point. We show that the system`s Hamiltonian can be completely reconstructed from our measurements. Our concept for the implementation of AQC, by making use of flux qubits, is discussed.
The ground state susceptibility of a system consisting of three flux-qubits was measured in the complete three dimensional flux space around the common degeneracy point of the qubits. The systems Hamiltonian could be completely reconstructed from mea
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonl
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling fr
We have demonstrated strong antiferromagnetic coupling between two three-junction flux qubits based on a shared Josephson junction, and therefore not limited by the small inductances of the qubit loops. The coupling sign and magnitude were measured b
We present a new method to measure 1/f noise in Josephson quantum bits (qubits) that yields low-frequency spectra below 1Hz. Comparison of noise taken at positive and negative bias of a phase qubit shows the dominant noise source to be flux noise and