ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic quantum computation with flux qubits, first experimental results

111   0   0.0 ( 0 )
 نشر من قبل Simon van der Ploeg
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controllable adiabatic evolution of a multi-qubit system can be used for adiabatic quantum computation (AQC). This evolution ends at a configuration where the Hamiltonian of the system encodes the solution of the problem to be solved. As a first steps towards realization of AQC we have investigated two, three and four flux qubit systems. These systems were characterized by making use of a radio-frequency method. We designed two-qubit systems with coupling energies up to several kelvins. For the three-flux-qubit systems we determined the complete ground-state flux diagram in the three dimensional flux space around the qubits common degeneracy point. We show that the system`s Hamiltonian can be completely reconstructed from our measurements. Our concept for the implementation of AQC, by making use of flux qubits, is discussed.



قيم البحث

اقرأ أيضاً

The ground state susceptibility of a system consisting of three flux-qubits was measured in the complete three dimensional flux space around the common degeneracy point of the qubits. The systems Hamiltonian could be completely reconstructed from mea surements made far away from the common degeneracy point. The subsequent measurements made around this point show complete agreement with the theoretical predictions which follow from this Hamiltonian. The ground state anti-crossings of the system could be read-out directly from these measurements. This allows one to determine the ground-state flux diagram, which provides the solution for the non-polynomial optimization problem MAXCUT encoded in the Hamiltonian of the three-flux-qubit system. Our results show that adiabatic quantum computation can be demonstrated with this system provided that the energy gap and/or the speed of the read-out is increased.
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonl inear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a measured gain of about 20 dB. We argue, that this arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with a large tunable Kerr nonlinearity.
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive coupling between two adjacent flux qubits. The nontrivial dependence of the SQUIDs susceptibility on external flux makes it possible to continuously tune the induced coupling fr om antiferromagnetic (AF) to ferromagnetic (FM). In particular, for suitable parameters, the induced FM coupling can be sufficiently large to overcome any possible direct AF inductive coupling between the qubits. The main features follow from a classical analysis of the multi-qubit potential. A fully quantum treatment yields similar results, but with a modified expression for the SQUID susceptibility. Since the latter is exact, it can also be used to evaluate the susceptibility--or, equivalently, energy-level curvature--of an isolated rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable) qubit. The result is compared to the standard two-level (pseudospin) treatment of the anticrossing, and the ensuing conclusions are verified numerically.
We have demonstrated strong antiferromagnetic coupling between two three-junction flux qubits based on a shared Josephson junction, and therefore not limited by the small inductances of the qubit loops. The coupling sign and magnitude were measured b y coupling the system to a high-quality superconducting tank circuit. Design modifications allowing to continuously tune the coupling strength and/or make the coupling ferromagnetic are discussed.
We present a new method to measure 1/f noise in Josephson quantum bits (qubits) that yields low-frequency spectra below 1Hz. Comparison of noise taken at positive and negative bias of a phase qubit shows the dominant noise source to be flux noise and not junction critical-current noise, with a magnitude similar to that measured previously in other systems. Theoretical calculations show that the level of flux noise is not compatible with the standard model of noise from two-level state defects in the surface oxides of the films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا