ﻻ يوجد ملخص باللغة العربية
New hot topic in ARPES on HTSC, the observation of the so called waterfalls, is addressed. The energy scale at about 0.2-0.3 eV that can be derived from the coherent component of ARPES spectra measured along the nodal direction is not new but has been already discussed in terms of a coupling to a bosonic continuum. However, the waterfalls, namely the long vertical parts of the experimental dispersion around the center of the Brillouin zone (BZ), seem to be purely artificial. They are a consequence of simple matrix-element effect: a complete suppression of the photoemission intensity from both the coherent and incoherent components. When the matrix-elements are taken into account, the latter reveals a grid-like structure along the bonding directions in the BZ.
We study the pump-probe response of three insulating cuprates and develop a model for its recombination kinetics. The dependence on time, fluence, and both pump and probe photon energies imply many-body recombination on femtosecond timescales, charac
Within the microscopic theory of the normal-state pseudogap state, the doping and temperature dependence of the charge dynamics in doped cuprates is studied in the whole doping range from the underdoped to heavily overdoped. The conductivity spectrum
We discuss the necessary symmetry conditions and the different ways in which they can be physically realized for the occurrence of ferromagnetism accompanying the loop current orbital magnetic order observed by polarized neutron-diffraction experimen
The enigmatic cuprate superconductors have attracted resurgent interest with several recent reports and discussions of competing orders in the underdoped side. Motivated by this, here we address the natural question of fragility of the d-wave superco
Many puzzling properties of high-$T_c$ superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wavevector parallel to the Cu-O bonds. These electronic states are most affecte