ﻻ يوجد ملخص باللغة العربية
Since the early days of quantum physics, the complex behavior of three interacting particles has been the subject of numerous experimental and theoretical studies. In a recent Letter to Nature, Kraemer et al. [Nature (London) 440, 315 (2006)] report on experimental ``evidence for Efimov quantum states in an ultracold gas of cesium atoms. Such quantum states refer to an infinite series of energy levels of three identical Bose particles, accumulating at the threshold for dissociation as the scattering length of each pair is tuned to infinity. Whereas the existence of a single Efimov state has been predicted for three helium atoms, earlier experimental studies concluded that this elusive state had not been found. In this paper we show by an intuitive argument and full numerical calculations that the helium and cesium experiments actually provide evidence of the same, ground state of this trimer spectrum, which the helium experimentalists and pioneering theoretical studies had not associated with Efimovs effect. Unlike the helium trimer, the observed 133Cs_3 resonance refers to a Borromean molecular state. We discuss how as yet unobserved, excited Efimov quantum states might be detected in ultracold gases of 85Rb and of 133Cs at magnetic field strengths in the vicinity of 0.08 T (800 G).
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakth
Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This Review broadly covers the phenomen
The field of few-body physics has originally been motivated by understanding nuclear matter. New model systems to experimentally explore few-body quantum systems can now be realized in ultracold gases with tunable interactions. Albeit the vastly diff
Systems of three interacting particles are notorious for their complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of bound trimer states appearing for three identical bosons w
A review on superfluidity and the BEC-BCS crossover in ultracold Fermi gases.