ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden symmetries in Bechgaard salt (TMTSF)2NO3

189   0   0.0 ( 0 )
 نشر من قبل Mario Basletic
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among known Bechgaard and Fabre salts (TMTSF)2NO3 is unique since it never becomes superconducting even under pressure. Also, though (TMTSF)2NO3 undergoes the spin density wave (SDW) transition, the low temperature transport is semimetallic and gapless. We propose: a) the absence of the superconductivity is due to the inverse symmetry breaking associated with the anion ordering at 45K; b) the SDW state below 9K should be unconventional as seen from the angle dependent magnetoresistance oscillation (AMRO); c) a new phase diagram for Bechgaard salts, where unconventional spin density wave (USDW) occupies the prominent space.



قيم البحث

اقرأ أيضاً

Among many Bechgaard salts, TMTSF2NO3 exhibits very anomalous low temperature properties. Unlike conventional spin density wave (SDW), TMTSF2NO3 undergoes the SDW transition at $T_SDWapprox 9.5$ K and the low temperature quasiparticle excitations are gapless. Also, it is known that TMTSF2NO3 does not exhibit superconductivity even under pressure, while FISDW is found in TMTSF2NO3 only for P=8.5 kbar and B>20 T. Here we shall show that both the angle dependent magnetoresistance data and the nonlinear Hall resistance of TMTSF2NO3 at ambient pressure are interpreted satisfactory in terms of unconventional spin density wave (USDW). Based on these facts, we propose a new phase diagram for Bechgaards salts.
We performed Se and F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the Temperature-Pressure phase diagram, determined by precise transport measurements [Jo et al., Phys. Rev. B67 , 014516 (2003)]. We claim that such varieties of electronic states in the refined phase diagram are caused by strong couplings of the conduction electrons with FSO3 anions, especially with the permanent electric dipoles on the anions. We suggest that as temperature decreases, the FSO3 anions form orientational ordering through two steps; first only the tetrahedrons form an orientational order leaving the orientations of the electronic dipoles in random (transition I); then the dipoles form a perfect orientational order at a lower temperature (transition II). In the intermediate temperature range between transitions I and II, we found an appreciable enhancement of homogeneous and inhomogeneous widths of 77Se-NMR spectrum. From the analysis of the angular dependence of the linewidth, we attributed these anomalies to the intramolecular charge disproportionation or imbalance and its slow dynamics caused by the coupling with the permanent electric dipole of anion. Results of 19F-NMR relaxation and lineshape measurements support this picture very well. Electronic structures at higher pressures up to 1.25 GPa are discussed on the basis of the results of the 77Se and 19F-NMR measurements.
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)$_2$PF$_6$-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)$_2$PF$_6$-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 10$^2$ MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF$_6$ and AsF$_6$ salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {theta}$_E$ = 8.3 K and {theta}$_E$ = 6.7 K for the PF$_6$-D12 and AsF$_6$-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)$_2$PF$_6$ is dominated by the librational motion of the PF$_6$ units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {theta}$_E$ = 50 K and {theta}$_E$ = 76 K for the PF$_6$-D12 and PF$_6$-H12 salts, respectively.
The Bechgaard salts are made of weakly coupled one dimensional chains. This particular structure gives the possibility to observe in these systems a dimensional crossover between a high temperature (or high energy) one dimensional phase and a two or three dimensional system. Since the filling of the chains is commensurate the system thus undergoes a deconfinement transition from a one dimensional Mott insulator to a two (or three) dimensional metal. Such a transition has of course a strong impact on the physical properties of these compounds, and is directly seen in transport measurements. In order to describe such a transition a dynamical mean field method has been introduced (chain-DMFT). Using this method we investigate a system of coupled Hubbard chains and show that we can indeed reproduce the deconfinement transition. This allows to determine physical quantities such as the transport transverse to the chains and the shape of the Fermi surface and quasiparticle residues in the low temperature phase.
94 - W. Yu , F. Zhang , F. Zamborszky 2004
(TMTTF)$_2$SbF$_6$ is known to undergo a charge ordering (CO) phase transition at $T_{CO}approx156K$ and another transition to an antiferromagnetic (AF) state at $T_Napprox 8K$. Applied pressure $P$ causes a decrease in both $T_{CO}$ and $T_N$. When $P>0.5 GPa$, the CO is largely supressed, and there is no remaining signature of AF order. Instead, the ground state is a singlet. In addition to establishing an expanded, general phase diagram for the physics of TMTTF salts, we establish the role of electron-lattice coupling in determining how the system evolves with pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا