ﻻ يوجد ملخص باللغة العربية
Among known Bechgaard and Fabre salts (TMTSF)2NO3 is unique since it never becomes superconducting even under pressure. Also, though (TMTSF)2NO3 undergoes the spin density wave (SDW) transition, the low temperature transport is semimetallic and gapless. We propose: a) the absence of the superconductivity is due to the inverse symmetry breaking associated with the anion ordering at 45K; b) the SDW state below 9K should be unconventional as seen from the angle dependent magnetoresistance oscillation (AMRO); c) a new phase diagram for Bechgaard salts, where unconventional spin density wave (USDW) occupies the prominent space.
Among many Bechgaard salts, TMTSF2NO3 exhibits very anomalous low temperature properties. Unlike conventional spin density wave (SDW), TMTSF2NO3 undergoes the SDW transition at $T_SDWapprox 9.5$ K and the low temperature quasiparticle excitations are
We performed Se and F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the Temperature-Pressure phase diagram, determined by precise transport measurements [Jo et al., Phys. Rev. B67
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering
The Bechgaard salts are made of weakly coupled one dimensional chains. This particular structure gives the possibility to observe in these systems a dimensional crossover between a high temperature (or high energy) one dimensional phase and a two or
(TMTTF)$_2$SbF$_6$ is known to undergo a charge ordering (CO) phase transition at $T_{CO}approx156K$ and another transition to an antiferromagnetic (AF) state at $T_Napprox 8K$. Applied pressure $P$ causes a decrease in both $T_{CO}$ and $T_N$. When