ﻻ يوجد ملخص باللغة العربية
Radio-frequency spectroscopy is used to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances the system does not become superfluid even at zero temperature. In this normal phase full pairing of the minority atoms is observed. This demonstrates that mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.
We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two di
A single-hole ground state ansatz for the two-dimensional t-J model has been recently studied by variational Monte Carlo (VMC) method. Such a doped hole behaves like a ``twisted non-Landau quasiparticle characterized by an emergent quantum number in
We explore the ground states in population-imbalanced attractive 1-D fermionic optical lattice filling $p$ orbitals over the lowest $s$ one by using the density-matrix-renormalization-group (DMRG) method. The DMRG calculations find the occurrence of
We obtain a phase diagram of the spin imbalanced Hubbard model on the Lieb lattice, which is known to feature a flat band in its single-particle spectrum. Using the BCS mean-field theory for multiband systems, we find a variety of superfluid phases w
An unbiased zero-temperature auxiliary-field quantum Monte Carlo method is employed to analyze the nature of the semimetallic phase of the two-dimensional Hubbard model on the honeycomb lattice at half filling. It is shown that the quasiparticle weig