ﻻ يوجد ملخص باللغة العربية
We report 7Li NMR, magnetic susceptibility, and heat capacity measurements on the triangular lattice Heisenberg antiferromagnet compound LiCrO2. We find that in contrast to NaCrO2, magnetic properties of LiCrO2 have a more pronounced three dimensional character with sharp anomalies in the temperature variation of the 7Li NMR intensity and the NMR spin-lattice relaxation rate 1/T1. From heat capacity measurements we find that the total entropy related to the magnetic transition is in agreement with expectations. However, we find a significant contribution to the magnetic entropy in the range from the ordering temperature T_N to nearly 4T_N. This suggests the existence of magnetic correlations at temperatures well above T_N which might be due to the frustrated nature of the system. Based on the temperature dependence of 1/T1, we discuss the possible occurrence of a Kosterlitz-Thouless-Berezinskii transition taking place at T_KTB = 55 K in LiCrO2. Lithium depletion has no significant effect on the magnetic properties and the behaviour of Li0.5CrO2 is nearly unchanged from that of LiCrO2.
We report 7Li NMR studies of single crystals of triangular-lattice Heisenberg antiferromagnet Li7RuO6. Slow critical divergence with a wide critical region of |T/TN - 1|< 7 was observed in 7Li nuclear spin-lattice relaxation rate. The slowing down of
The anisotropic triangular lattice of the crednerite system Cu(Mn1-xCux)O2 is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measur
The compound CaV2O4 contains V^{+3} cations with spin S = 1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c-axis. We have grown single crystals of CaV2O4 and report crystallography, static
We present a complete characterization of ferromagnetic system CeIr2B2 using powder x-ray diffraction XRD, magnetic susceptibility chi(T), isothermal magnetization M(H), specific heat C(T), electrical resistivity rho(T,H), and thermoelectric power S(
Oscillating behaviour of the susceptibility and heat capacity is considered for normal and superconducting mesoscopic systems (nanoclusters and quantum dots). It is proved that at low temperature an increasing magnetic field applied to a mesoscopic s