ﻻ يوجد ملخص باللغة العربية
Several experimental and theoretical studies in cobaltates suggest the proximity of the system to charge ordering (CO). We show, qualitatively, in the frame of a $t-V$ model coupled to phonons that optical phonon modes at the $K$ and $M$ points of the Brillouin zone, which involves only $O$-ions displacement around a $Co$-ion, are good candidates to display anomalies due to the CO proximity. If by increasing of $H_2O$ content the system is pushed closer to CO, the mentioned phonon modes should show softening and broadening.
We consider possible routes to superconductivity in hydrated cobaltates Na_xCoO_2.yH_2O on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against d
The Holstein Model (HM) describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At high
Charge-density wave (CDW) modulations in underdoped high-temperature cuprate superconductors remain a central puzzle in condensed matter physics. However, despite a substantial experimental verification of this ubiquitous phase in a large class of hi
Charge-density wave order is now understood to be a widespread feature of underdoped cuprate high-temperature superconductors, although its origins remain unclear. While experiments suggest that the charge-ordering wavevector is determined by Fermi-s
We present an explanation for the puzzling spectral and transport properties of layered cobaltates close to the band-insulator limit, which relies on the key effect of charge ordering. Blocking a significant fraction of the lattice sites deeply modif