ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity Induced Superconductivity and Multiple Andreev Reflections in Few-Layer-Graphene

71   0   0.0 ( 0 )
 نشر من قبل Helene Bouchiat
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated electronic transport of few-layer-graphene (FLG) connected to superconducting electrodes. The device is prepared by mechanical exfoliation of graphite. A small mesa of FLG is placed on the surface of an insulating Alumina layer over silicon substrate, and is connected with two tungsten electrodes, separated by 2.5 microns, grown by focused ion beam. While tungsten electrodes are superconducting below 4 K, proximity induced superconductivity in FLG is observed below 1K with a large differential resistance drop at low bias. Signatures of multiple Andreev reflections are observed as peaks located at voltages corresponding to sub-multiple values of the superconducting gap of the electrodes.

قيم البحث

اقرأ أيضاً

We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra nge of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).
Electrons incident from a normal metal onto a superconductor are reflected back as holes - a process called Andreev reflection. In a normal metal where the Fermi energy is much larger than a typical superconducting gap, the reflected hole retraces th e path taken by the incident electron. In graphene with ultra low disorder, however, the Fermi energy can be tuned to be smaller than the superconducting gap. In this unusual limit, the holes are expected to be reflected specularly at the superconductor-graphene interface due to the onset of interband Andreev processes, where the effective mass of the reflected holes change sign. Here we present measurements of gate modulated Andreev reflections across the low disorder van der Waals interface formed between graphene and the superconducting NbSe2. We find that the conductance across the graphene-superconductor interface exhibits a characteristic suppression when the Fermi energy is tuned to values smaller than the superconducting gap, a hallmark for the transition between intraband retro- and interband specular- Andreev reflections.
193 - M. Houzet , P. Samuelsson 2010
We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.
We investigate the mesoscopic disorder induced rms conductance variance $delta G$ in a few layer graphene nanoribbon (FGNR) contacted by two superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we observe pronounced conductance fluc tuations superimposed on a linear background of the two terminal conductance G. The linear gate-voltage induced response can be modeled by a set of inter-layer and intra-layer capacitances. $delta G$ depends on temperature T and source-drain voltage $V_{sd}$. $delta G$ increases with decreasing T and $|V_{sd}|$. When lowering $|V_{sd}|$, a pronounced cross-over at a voltage corresponding to the superconducting energy gap $Delta$ is observed. For $|V_{sd}|ltequiv Delta$ the fluctuations are markedly enhanced. Expressed in the conductance variance $G_{GS}$ of one graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at the base temperature of 230 mK. The conductance variance in the sub-gap region are larger by up to a factor of 1.4-1.8 compared to the normal state. The observed strong enhancement is due to phase coherent charge transfer caused by Andreev reflection at the nanoribbon-superconductor interface.
Epitaxially grown, high quality semiconductor InSb nanowires are emerging material systems for the development of high performance nanoelectronics and quantum information processing and communication devices, and for the studies of new physical pheno mena in solid state systems. Here, we report on measurements of a superconductor-normal conductor-superconductor junction device fabricated from an InSb nanowire with aluminum based superconducting contacts. The measurements show a proximity induced supercurrent flowing through the InSb nanowire segment, with a critical current tunable by a gate, in the current bias configuration and multiple Andreev reflection characteristics in the voltage bias configuration. The temperature dependence and the magnetic field dependence of the critical current and the multiple Andreev reflection characteristics of the junction are also studied. Furthermore, we extract the excess current from the measurements and study its temperature and magnetic field dependences. The successful observation of the superconductivity in the InSb nanowire based Josephson junction device indicates that InSb nanowires provide an excellent material system for creating and observing novel physical phenomena such as Majorana fermions in solid state systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا