ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge Gap in the One-Dimensional Extended Hubbard Model at Quarter Filling

78   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Sano
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new combined approach of the exact diagonalization, the renormalization group and the Bethe ansatz for precise estimates of the charge gap $Delta$ in the one-dimensional extended Hubbard model with the onsite and the nearest-neighbor interactions $U$ and $V$ at quarter filling. This approach enables us to obtain the absolute value of $Delta$ including the prefactor without ambiguity even in the critical regime of the metal-insulator transition (MIT) where $Delta$ is exponentially small, beyond usual renormalization group methods and/or finite size scaling approaches. The detailed results of $Delta$ down to of order of $10^{-10}$ near the MIT are shown as contour lines on the $U$-$V$ plane.



قيم البحث

اقرأ أيضاً

We calculate the charge and spin Drude weight of the one-dimensional extended Hubbard model with on-site repulsion $U$ and nearest-neighbor repulsion $V$ at quarter filling using the density-matrix renormalization group method combined with a variati onal principle. Our numerical results for the Hubbard model (V=0) agree with exact results obtained from the Bethe ansatz solution. We obtain the contour map for both Drude weights in the $UV$-parameter space for repulsive interactions. We find that the charge Drude weight is discontinuous across the Kosterlitz-Thouless transition between the Luttinger liquid and the charge-density-wave insulator, while the spin Drude weight varies smoothly and remains finite in both phases. Our results can be generally understood using bosonization and renormalization group results. The finite-size scaling of the charge Drude weight is well fitted by a polynomial function of the inverse system size in the metallic region. In the insulating region we find an exponential decay of the finite-size corrections with the system size and a universal relation between the charge gap $Delta_c$ and the correlation length $xi$ which controls this exponential decay.
We investigate the dynamical spin and charge structure factors and the one-particle spectral function of the one-dimensional extended Hubbard model at half band-filling using the dynamical density-matrix renormalization group method. The influence of the model parameters on these frequency- and momentum-resolved dynamical correlation functions is discussed in detail for the Mott-insulating regime. We find quantitative agreement between our numerical results and experiments for the optical conductivity, resonant inelastic X-ray scattering, neutron scattering, and angle-resolved photoemission spectroscopy in the quasi-one-dimensional Mott insulator SrCuO$_2$.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes e nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.
Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave packets separate into spin-only and charge-only excitations (spin-charge separation). Charge and spin velocities exhibit non-monotonic dependence on V. For small and intermediate values of V, both velocities increase with V. However, the charge velocity exhibits a stronger dependence than that of the spin, leading to a more pronounced spin-charge separation. Charge fractionalization, on the other hand, is weakly affected by V. The results are explained in terms of Luttinger liquid theory in the weak-coupling limit, and an effective model in the strong-coupling regime.
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation func tions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model for which the charge Drude weight decays exponentially with system size, as expected for a non-integrable model. We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse mass ratio of $eta gtrsim 0.25$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا