ﻻ يوجد ملخص باللغة العربية
We report on orientation of the order parameter in the 3He-A and 3He-B phases caused by aerogel anisotropy. In 3He-A we have observed relatively homogeneous NMR line with an anomalously large negative frequency shift. We can attribute this effect to an orientation of orbital momentum along the axis of density anisotropy. The similar orientation effect we have seen in 3He-B. We can measure the A-phase Leggett frequency, which shows the same energy gap suppression as in the B-phase. We observe a correlation of A - B transition temperature and NMR frequency shift.
It was found that NMR properties of both superfluid phases of $^3$He in anisotropic aerogel can be described in terms of the bulk superfluid order parameters with the orbital order parameter vector fixed by anisotropy of the aerogel sample. It was al
It has been shown that the relative stabilities of various superfluid states of 3He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on 3He im
Superfluid 3He is an unconventional neutral superfluid in a p-wave state with three different superfluid phases each identified by a unique set of characteristic broken symmetries and non- trivial topology. Despite natural immunity of 3He from defect
It was found that two different spin states of the A-like phase can be obtained in aerogel sample. In one of these states we have observed the signal of the longitudinal NMR, while in another state no trace of such a signal was found. The states also
In recent work it was shown that new anisotropic p-wave states of superfluid 3He can be stabilized within high porosity silica aerogel under uniform positive strain [1]. In contrast, the equilibrium phase in an unstrained aerogel, is the isotropic su