ﻻ يوجد ملخص باللغة العربية
We demonstrate theoretically how photon number statistics of a driven, damped oscillator at finite temperature can be extracted by measuring the dephasing spectrum of a two-level system dispersively coupled to the oscillator; we thus extend the work of Dykman (1987) and Gambetta et al. (2006). We carefully consider the fidelity of this scheme-- to what extent does the measurement reflect the initial number statistics of the mode? We also derive analytic results for the dephasing of a qubit by a driven, thermal mode, and compare results obtained at different levels of approximation. Our results have relevance both to experiments in circuit cavity QED, as well as to nano-electromechanical systems.
We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong mo
Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving certain qubit and cavity transitions. Our prot
We analyze the dynamics of a continuously observed, damped, microwave driven solid state charge qubit. The qubit consists of a single electron in a double well potential, coupled to an oscillating electric field, and which is continuously observed by
The complete characterisation of the charge transport in a mesoscopic device is provided by the Full Counting Statistics (FCS) $P_t(m)$, describing the amount of charge $Q = me$ transmitted during the time $t$. Although numerous systems have been the
We uncover a remarkably regular array of singularity-like structures within the deep strong-coupling limit of qubit-oscillator (e.g. light-matter) systems described by the quantum Rabi model, as a function of time and coupling strength. These non-ana