ترغب بنشر مسار تعليمي؟ اضغط هنا

Angle-resolved photoemission and first-principles electronic structure of single-crystalline $alpha$-uranium (001)

72   0   0.0 ( 0 )
 نشر من قبل Bogdan Mihaila
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuing the photoemission study begun with the work of Opeil et al. [Phys. Rev. B textbf{73}, 165109 (2006)], in this paper we report results of an angle-resolved photoemission spectroscopy (ARPES) study performed on a high-quality single-crystal $alpha$-uranium at 173 K. The absence of surface-reconstruction effects is verified using X-ray Laue and low-energy electron diffraction (LEED) patterns. We compare the ARPES intensity map with first-principles band structure calculations using a generalized gradient approximation (GGA) and we find good correlations with the calculated dispersion of the electronic bands.



قيم البحث

اقرأ أيضاً

97 - S. Ito , B. Feng , M. Arita 2017
Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal a toms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.
129 - Fengfeng Zhu , W. X. Jiang , P. Li 2016
Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Through sy stematically photon energy and polarization dependent measurements, the energy bands along the out-of-plane and in-plane directions were experimentally determined. Except the localized states of Mn, the measured band dispersions agree very well with the first-principle calculations of undoped BaZn$_{2}$As$_{2}$. A new feature related to Mn 3d states was identified at the binding energies of about -1.6 eV besides the previously observed feature at about -3.3 eV. We suggest that the hybridization between Mn and As orbitals strongly enhanced the density of states around -1.6 eV. Although our resolution is much better compared with previous soft X-ray photoemission experiments, no clear hybridization gap between Mn 3d states and the valence bands proposed by previous model calculations was detected.
153 - Z. R. Ye , H. F. Yang , D. W. Shen 2014
NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ is a new layered superconductor. We have studied the low-lying electronic structure of a single crystalline NdO$_{0.5}$F$_{0.5}$BiS$_{2}$ superconductor, whose superconducting transition temperature is 4.87K, with angle- resolved photoemission spectroscopy. The Fermi surface consists of two small electron pockets around the X point and shows little warping along the $k_z$ direction. Our results demonstrate the multi-band and two-dimensional nature of the electronic structure. The good agreement between the photoemission data and the band calculations gives the renormalization factor of 1, indicating the rather weak electron correlations in this material. Moreover, we found that the actual electron doping level and Fermi surface size are much smaller than what are expected from the nominal composition, which could be largely explained by the bismuth dificiency. The small Fermi pocket size and the weak electron correlations found here put strong constraints on theory, and suggest that the BiS$_2$-based superconductors could be conventional BCS superconductors mediated by the electron-phonon coupling.
We have carried out a first principles study of the elastic properties and electronic structure for two room-temperature stable Pt silicide phases, tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the equilibrium structural pa rameters for both phases: the a and c lattice constants for alpha-Pt_2Si and the a, b, and c lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and predicting values for the six (nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These calculations include a full treatment of all relevant internal displacements induced by the elastic strains, including an explicit determination of the dimensionless internal displacement parameters for the three strains in alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the calculated elastic constants, both within a given material as well as between the two silicides and the pure Pt and Si phases. The calculated electronic structure confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently we expect that the Drude component of the optical absorption will be much smaller than in good metals such as pure Pt. This observation, combined with the topology found in the first principles spin-orbit split band structure, suggests that it may be important to include the interband contribution to the optical absorption, even in the infrared region.
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfa ces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a bulk unfolding scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا