ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Binder Cumulant and Lack of Self-Averageness in Systems with Quenched Disorder

75   0   0.0 ( 0 )
 نشر من قبل Hyunsuk Hong
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Binder cumulant (BC) has been widely used for locating the phase transition point accurately in systems with thermal noise. In systems with quenched disorder, the BC may show subtle finite-size effects due to large sample-to-sample fluctuations. We study the globally coupled Kuramoto model of interacting limit-cycle oscillators with random natural frequencies and find an anomalous dip in the BC near the transition. We show that the dip is related to non-self-averageness of the order parameter at the transition. Alternative definitions of the BC, which do not show any anomalous behavior regardless of the existence of non-self-averageness, are proposed.



قيم البحث

اقرأ أيضاً

117 - J. M. Fish , R. L. C. Vink 2010
We consider the isotropic-to-nematic transition in liquid crystals confined to aerogel hosts, and assume that the aerogel acts as a random field. We generally find that self-averaging is violated. For a bulk transition that is weakly first-order, the violation of self-averaging is so severe, even the correlation length becomes non-self-averaging: no phase transition remains in this case. For a bulk transition that is more strongly first-order, the violation of self-averaging is milder, and a phase transition is observed.
We present an extensive analysis of transport properties in superdiffusive two dimensional quenched random media, obtained by packing disks with radii distributed according to a Levy law. We consider transport and scaling properties in samples packed with two different procedures, at fixed filling fraction and at self-similar packing, and we clarify the role of the two procedures in the superdiffusive effects. Using the behavior of the filling fraction in finite size systems as the main geometrical parameter, we define an effective Levy exponents that correctly estimate the finite size effects. The effective Levy exponent rules the dynamical scaling of the main transport properties and identify the region where superdiffusive effects can be detected.
305 - A. Malakis , N.G. Fytas , 2013
We investigate the dependence of the critical Binder cumulant of the magnetization and the largest Fortuin-Kasteleyn cluster on the boundary conditions and aspect ratio of the underlying square Ising lattices. By means of the Swendsen-Wang algorithm, we generate numerical data for large system sizes and we perform a detailed finite-size scaling analysis for several values of the aspect ratio $r$, for both periodic and free boundary conditions. We estimate the universal probability density functions of the largest Fortuin-Kasteleyn cluster and we compare it to those of the magnetization at criticality. It is shown that these probability density functions follow similar scaling laws, and it is found that the values of the critical Binder cumulant of the largest Fortuin-Kasteleyn cluster are upper bounds to the values of the respective order-parameters cumulant, with a splitting behavior for large values of the aspect ratio. We also investigate the dependence of the amplitudes of the magnetization and the largest Fortuin-Kasteleyn cluster on the aspect ratio and boundary conditions. We find that the associated exponents, describing the aspect ratio dependencies, are different for the magnetization and the largest Fortuin-Kasteleyn cluster, but in each case are independent of boundary conditions.
208 - W. Selke , L.N. Shchur 2009
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next--nearest neighbors, along only one diagonal, is determin ed using Monte Carlo techniques. In the phase diagram a disorder line occurs separating regions with monotonically decaying and with oscillatory spin--spin correlations. Findings on the variation of the critical cumulant with the ratio of the two interaction strengths are compared to related recent results based on renormalization group calculations.
117 - J.J.Alonso 2008
We study by Monte Carlo simulations the effect of quenched orientational disorder in systems of interacting classical dipoles on a square lattice. Each dipole can lie along any of two perpendicular axes that form an angle psi with the principal axes of the lattice. We choose psi at random and without bias from the interval [-Delta, Delta] for each site of the lattice. For 0<Delta <~ pi/4 we find a thermally driven second order transition between a paramagnetic and a dipolar antiferromagnetic order phase and critical exponents that change continously with Delta. Near the case of maximum disorder Delta ~ pi/4 we still find a second order transition at a finite temperature T_c but our results point to weak instead of {it strong} long-ranged dipolar order for temperatures below T_c.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا