ﻻ يوجد ملخص باللغة العربية
We calculate the transfer rate of correlations from polarization entangled photons to the collective spin of a many-electron state in a two-band system. It is shown that when a semiconductor absorbs pairs of photons from a two-mode squeezed vacuum, certain fourth order electron-photon processes correlate the spins of the excited electron pairs of different quasi-momenta. Different distributions of the quantum Stokes vector of the light lead to either enhancement or reduction of the collective spin correlations, depending on the symmetry of the distribution. We find that as the squeezing of the light becomes non-classical, the spin correlations exhibit a crossover from being positive with a $sim N^2$ ($N$ is average photon number) scaling, to being negative with $sim N$ scaling, even when $N$ is not small. Negative spin correlations mean a preponderance of spin singlets in the optically generated state. We discuss the possibility to measure the collective spin correlations in a combined measurement of the Faraday rotation fluctuation spectrum and excitation density in a steady-state configuration.
The effect of hyperfine interaction on the room-temperature defect-enabled spin filtering effect in GaNAs alloys is investigated both experimentally and theoretically through a master equation approach based on the hyperfine and Zeeman interaction be
We report on theoretical and experimental study of the spin polarization recovery and Hanle effect for the charge carriers interacting with the fluctuating nuclear spins in the semiconductor structures. We start the theoretical description from the s
We consider a semiconductor quantum-well placed in a wave guide microcavity and interacting with the broadband squeezed vacuum radiation, which fills one mode of the wave guide with a large average occupation. The wave guide modifies the optical dens
Photon-number correlation measurements are performed on bright squeezed vacuum states using a standard Bell-test setup, and quantum correlations are observed for conjugate polarization-frequency modes. We further test the entanglement witnesses for t
The resonance energy and the transition rate of atoms, molecules and solids were understood as their intrinsic properties in classical electromagnetism. With the development of quantum electrodynamics, it is realized that these quantities are linked