ﻻ يوجد ملخص باللغة العربية
Two types of optical metamaterials operating at near-IR and mid-IR frequencies, respectively, have been designed, fabricated by nanoimprint lithography (NIL), and characterized by laser spectroscopic ellipsometry. The structure for the near-IR range was a metal/dielectric/metal stack fishnet structure that demonstrated negative permittivity and permeability in the same frequency region and hence exhibited a negative refractive index at a wavelength near 1.7 um. In the mid-IR range, the metamaterial was an ordered array of four-fold symmetric L-shaped resonators (LSRs) that showed both a dipole plasmon resonance resulting in negative permittivity and a magnetic resonance with negative permeability near wavelengths of 3.7 um and 5.25 um, respectively. The optical properties of both metamaterials are in agreement with theoretical predictions. This work demonstrates the feasibility of designing various optical negative-index metamaterials and fabricating them using the nanoimprint lithography as a low-cost, high-throughput fabrication approach.
Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by one-pot methodology of solvent vapour assisted nanoimprint lithography (SAIL).
We report the largest broadband terahertz (THz) polarizer based on a flexible ultra-transparent cyclic olefin copolymer (COC). The COC polarizers were fabricated by nanoimprint soft lithography with the lowest reported pitch of 2 or 3 micrometers and
Optical modulation of the effective refractive properties of a fishnet metamaterial with a Ag/Si/Ag heterostructure is demonstrated in the near-IR range and the associated fast dynamics of negative refractive index is studied by pump-probe method. Ph
In this paper we show spin dependent transport experiments in nanoconstrictions ranging from 30 to 200nm. These nanoconstrictions were fabricated combining electron beam lithography and thin film deposition techniques. Two types of geometries have be
Arrays of gold split-rings with 50-nm minimum feature size and with an LC resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a couplin