ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Induced Valence Transitions in f-Electron Systems

59   0   0.0 ( 0 )
 نشر من قبل Walter Temmerman
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A review is given of pressure induced valence transitions in f-electron systems calculated with the self-interaction corrected local spin density (SIC-LSD) approximation. These calculations show that the SIC-LSD is able to describe valence changes as a function of pressure or chemical composition. An important finding is the dual character of the f-electrons as either localized or band-like. A finite temperature generalisation is presented and applied to the study of the p-T phase diagram of the alpha to gamma phase transition in Ce.

قيم البحث

اقرأ أيضاً

Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW -like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
High pressure electrical resistance and x-ray diffraction measurements have been performed on ruthenium-doped Ba(Fe0.9Ru0.1)2As2, up to pressures of 32 GPa and down to temperatures of 10 K, using designer diamond anvils under quasi-hydrostatic condit ions. At 3.9 GPa, there is an evidence of pressure-induced superconductivity with Tc onset of 24 K and zero resistance at Tc zero of ~14.5 K. The superconducting transition temperature reaches maximum at ~5.5 GPa and then decreases gradually with increase in pressure before completely disappearing above 11.5 GPa. Upon increasing pressure at 200 K, an isostructural phase transition from a tetragonal (I4/mmm) phase to a collapsed tetragonal phase is observed at 14 GPa and the collapsed phase persists up to at least 30 GPa. The changes in the unit cell dimensions are highly anisotropic across the phase transition and are qualitatively similar to those observed in undoped BaFe2As2 parent.
53 - Z. E. Brubaker 2017
We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P=2.35 GPa. This work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, is unlikely.
Recently, natural van der Waals heterostructures of (MnBi2Te4)m(Bi2Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states. In this work, we systematically inves tigate both the structural and electronic responses of MnBi2Te4 and MnBi4Te7 to external pressure. In addition to the suppression of antiferromagnetic order, MnBi2Te4 is found to undergo a metal-semiconductor-metal transition upon compression. The resistivity of MnBi4Te7 changes dramatically under high pressure and a non-monotonic evolution of r{ho}(T) is observed. The nontrivial topology is proved to persists before the structural phase transition observed in the high-pressure regime. We find that the bulk and surface states respond differently to pressure, which is consistent with the non-monotonic change of the resistivity. Interestingly, a pressure-induced amorphous state is observed in MnBi2Te4, while two high pressure phase transitions are revealed in MnBi4Te7. Our combined theoretical and experimental research establishes MnBi2Te4 and MnBi4Te7 as highly tunable magnetic topological insulators, in which phase transitions and new ground states emerge upon compression.
380 - E. J. Cheng , W. Xia , X. B. Shi 2019
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا