ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of nonlinear optical spectroscopy of electron spin coherence in quantum dots

84   0   0.0 ( 0 )
 نشر من قبل Ren-Bao Liu
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study in theory the generation and detection of electron spin coherence in nonlinear optical spectroscopy of semiconductor quantum dots doped with single electrons. In third-order differential transmission spectra, the inverse width of the ultra-narrow peak at degenerate pump and probe frequencies gives the spin relaxation time ($T_1$), and that of the Stoke and anti-Stoke spin resonances gives the effective spin dephasing time due to the inhomogeneous broadening ($T_2^*$). The spin dephasing time excluding the inhomogeneous broadening effect ($T_2$) is measured by the inverse width of ultra-narrow hole-burning resonances in fifth-order differential transmission spectra.

قيم البحث

اقرأ أيضاً

We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Rama n spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.
The electron spin coherence in n-doped and undoped, self-assembled CdSe/Zn(S,Se) quantum dots has been studied by time-resolved pump-probe Kerr rotation. Long-lived spin coherence persisting up to 13 ns after spin orientation has been found in the n- doped quantum dots, outlasting significantly the lifetimes of charge neutral and negatively charged excitons of 350 - 530 ps. The electron spin dephasing time as long as 5.6 ns has been measured in a magnetic field of 0.25 T. Hyperfine interaction of resident electrons with a nuclear spin fluctuations is suggested as the main limiting factor for the dephasing time. The efficiency of this mechanism in II-VI and III-V quantum dots is analyzed.
We use tunneling spectroscopy to study the evolution of few-electron spin states in parallel InAs nanowire double quantum dots (QDs) as a function of level detuning and applied magnetic field. Compared to the much more studied serial configuration, p arallel coupling of the QDs to source and drain greatly expands the probing range of excited state transport. Owing to a strong confinement, we can here isolate transport involving only the very first interacting single QD orbital pair. For the (2,0)-(1,1) charge transition, with relevance for spin-based qubits, we investigate the excited (1,1) triplet, and hybridization of the (2,0) and (1,1) singlets. An applied magnetic field splits the (1,1) triplet, and due to spin-orbit induced mixing with the (2,0) singlet, we clearly resolve transport through all triplet states near the avoided singlet-triplet crossings. Transport calculations, based on a simple model with one orbital on each QD, fully replicate the experimental data. Finally, we observe an expected mirrored symmetry between the 1-2 and 2-3 electron transitions resulting from the two-fold spin degeneracy of the orbitals.
Electron spin coherence is induced via light-hole transitions in a quantum well waveguide without either an external or internal DC magnetic field. In the absence of spin precession, the induced spin coherence is detected through effects of quantum i nterference in the spectral domain coherent nonlinear optical response. We interpret the experimental results qualitatively using a simple few-level model with only the optical transition selection rule as its basic ingredients.
We theoretically investigate the properties of holes in a Si$_{x}$Ge$_{1-x}$/Ge/ Si$_{x}$Ge$_{1-x}$ quantum well in a perpendicular magnetic field that make them advantageous as qubits, including a large ($>$100~meV) intrinsic splitting between the l ight and heavy hole bands, a very light ($sim$0.05$, m_0$) in-plane effective mass, consistent with higher mobilities and tunnel rates, and larger dot sizes that could ameliorate constraints on device fabrication. Compared to electrons in quantum dots, hole qubits do not suffer from the presence of nearby quantum levels (e.g., valley states) that can compete with spins as qubits. The strong spin-orbit coupling in Ge quantum wells may be harnessed to implement electric-dipole spin resonance, leading to gate times of several nanoseconds for single-qubit rotations. The microscopic mechanism of this spin-orbit coupling is discussed, along with its implications for quantum gates based on electric-dipole spin resonance, stressing the importance of coupling terms that arise from the underlying cubic crystal field. Our results provide a theoretical foundation for recent experimental advances in Ge hole-spin qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا