ﻻ يوجد ملخص باللغة العربية
Elemental carbon represents a fundamental building block of matter and the possibility of ferromagnetic order in carbon attracted widespread attention. However, the origin of magnetic order in such a light element is only poorly understood and has puzzled researchers. We present a spectromicroscopy study at room temperature of proton irradiated metal free carbon using the elemental and chemical specificity of x-ray magnetic circular dichroism (XMCD). We demonstrate that the magnetic order in the investigated system originates only from the carbon $pi$-electron system.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals
We have studied magnetism in anatase Ti$_{1-x}$Co$_x$O$_{2-delta}$ ({it x} = 0.05) thin films with various electron carrier densities, by soft x-ray magnetic circular dichroism (XMCD) measurements at the Co $L_{2,3}$ absorption edges. For electricall
We found that the conventional model of orbital ordering of 3x^2-r^2/3y^2-r^2 type in the eg states of La_0.5Sr_1.5MnO_4 is incompatible with measurements of linear dichroism in the Mn 2p-edge x-ray absorption, whereas these eg states exhibit predomi
Noncollinear chiral spin textures in ferromagnetic multilayers are at the forefront of recent research in nano-magnetism with the promise for fast and energy-efficient devices. The recently demonstrated possibilities to stabilize such chiral structur
We demonstrate ultrafast magnetization dynamics in a 5d transition metal using circularly-polarized x-ray free electron laser in the hard x-ray region. A decay time of light-induced demagnetization of L1${}_0$-FePt was determined to be $tau_textrm{Pt