ﻻ يوجد ملخص باللغة العربية
I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Ring polymers exhibit unique flow properties due to their closed chain topology. Despite recent progress, we have not yet achieved a full understanding of the nonequilibrium flow behavior of rings in nondilute solutions where intermolecular interacti
The magnetic properties of a monolayer of Fe4 single molecule magnets grafted onto a Au (111) thin film have been investigated using low energy muon spin rotation. The properties of the monolayer are compared to bulk Fe4. We find that the magnetic pr
We deduce a fully analytical model to predict the artifacts of the measuring device handles in Single Molecule Force Spectroscopy experiments. As we show, neglecting the effects of the handle stiffness can lead to crucial overestimation or underestim
This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex m
Computational physics is an important tool for analysing, verifying, and -- at times -- replacing physical experiments. Nevertheless, simulating quantum systems and analysing quantum data has so far resisted an efficient classical treatment in full g