ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared study of valence transition compound YbInCu4 using cleaved surfaces

72   0   0.0 ( 0 )
 نشر من قبل Hidekazu Okamura
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical reflectivity R(w) of YbInCu4 single crystals has been measured across its first-order valence transition at T_v ~ 42 K, using both polished and cleaved surfaces. R(w) measured on cleaved surfaces Rc(w) was found much lower than that on polished surface Rp(w) over the entire infrared region. Upon cooling through T_v, Rc(w) showed a rapid change over a temperature range of less than 2 K, and showed only minor changes with further cooling. In contrast, Rp(w) showed much more gradual and continuous changes across T_v, similarly to previously reported data on polished surfaces. The present result on cleaved surfaces demonstrates that the microscopic electronic structures of YbInCu4 observed with infrared spectroscopy indeed undergo a sudden change upon the valence transition. The gradual temperature-evolution of Rp(w) is most likely due to the compositional and/or Yb-In site disorders caused by polishing.

قيم البحث

اقرأ أيضاً

We report the first high-field x-ray diffraction experiment using synchrotron x-rays and pulsed magnetic fields exceeding 30 T. Lattice deformation due to a magnetic-field-induced valence transition in YbInCu4 is studied. It has been found that the B ragg reflection profile at 32 K changes significantly at around 27 T due to the structural transition. In the vicinity of the transition field the low-field and the high-field phases are observed simultaneously as the two distinct Bragg reflection peaks: This is a direct evidence of the fact that the field-induced valence state transition is the first order phase transition. The field-dependence of the low-field-phase Bragg peak intensity is found to be scaled with the magnetization.
A diffraction experiment using a high energy x-ray was carried out on YbInCu4. Below the Yb valence transition temperature, the splitting of Bragg peaks was detected in higher-order reflections. No superlattice reflections accompanying the valence or dering were found below the transition temperature. These experimental findings indicate that a structural change from a cubic structure to a tetragonal structure without valence ordering occurs at the transition temperature. Such a structural change free from any valence ordering is difficult to understand only in terms of Yb valence degrees of freedom. This means that the structural change may be related to electronic symmetries such as quadrupolar degrees of freedom as well as the change in Yb valence.
Infrared reflectance of alpha-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in the range of 1D magnetic excitation energies was found. The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with vanishing intensity in c-polarisation. Activation of new phonons due to the lattice dimerisation were detected below 35K as well as pretransitional structural fluctuations up to 65K.
The effect of pressure on the unique electronic state of the antiferromagnetic (AF) compound EuCu2Ge2 has been measured in a wide temperature range from 10 mK to 300 K by electrical resistivity measurements up to 10 GPa. The Neel temperature of TN = 15 K at ambient pressure increases monotonically with increasing pressure and becomes a maximum of TN = 27 K at 6.2 GPa but suddenly drops to zero at Pc = 6.5 GPa, suggesting the quantum critical point (QCP) of the valence transition of Eu from a nearly divalent state to that with trivalent weight. The rhomag0 and A values obtained from the low-temperature electrical resistivity based on the Fermi liquid relation of rhomag = rhomag0 + AT^2 exhibit huge and sharp peaks around Pc. The exponent n obtained from the power law dependence rhomag = rhomag0 + BT^n is clearly less than 1.5 at P = Pc = 6. 5 GPa, which is expected at the AF-QCP. These results indicate that Pc coincides with Pv, corresponding to the quantum criticality of the valence transition pressure Pv. The electronic specific heat coefficient, estimated from the generalized Kadowaki-Woods relation, is about 510 mJ/mol K^2 around Pc, suggesting the formation of a heavy-fermion state.
The compound SmB$_6$ is the best established realization of a topological Kondo insulator, in which a topological insulator state is obtained through Kondo coherence. Recent studies have found evidence that the surface of SmB$_6$ hosts ferromagnetic domains, creating an intrinsic platform for unidirectional ballistic transport at the domain boundaries. Here, surface-sensitive X-ray absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS) spectra are measured at the Sm N$_{4,5}$-edge, and used to evaluate electronic symmetries, excitations and temperature dependence near the surface of cleaved samples. The XAS data show that the density of large-moment atomic multiplet states on a cleaved surface grows irreversibly over time, to a degree that likely exceeds a related change that has recently been observed in the surface 4f orbital occupation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا