ﻻ يوجد ملخص باللغة العربية
Understanding the magnetic excitations in high-transition temperature (high-$T_c$) copper oxides is important because they may mediate the electron pairing for superconductivity. By determining the wavevector ({bf Q}) and energy ($hbaromega$) dependence of the magnetic excitations, one can calculate the change in the exchange energy available to the superconducting condensation energy. For the high-$T_c$ superconductor YBa$_2$Cu$_3$O$_{6+x}$, the most prominent feature in the magnetic excitations is the resonance. Although the resonance has been suggested to contribute a major part of the superconducting condensation, the accuracy of such an estimation has been in doubt because the resonance is only a small portion of the total magnetic scattering. Here we report an extensive mapping of magnetic excitations for YBa$_2$Cu$_3$O$_{6.95}$ ($T_capprox 93$ K). Using the absolute intensity measurements of the full spectra, we estimate the change in the magnetic exchange energy between the normal and superconducting states and find it to be about 15 times larger than the superconducting condensation energy. Our results thus indicate that the change in the magnetic exchange energy is large enough to provide the driving force for high-$T_c$ superconductivity in YBa$_2$Cu$_3$O$_{6.95}$.
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are an
We have probed the Landau levels of nodal quasi-particles by tunneling along a nodal direction of (110) oriented YBa$_2$Cu$_3$O$_{7-x}$ thin films with a magnetic field applied perpendicular to the $CuO_2$ planes, and parallel to the films surface. I
We measure magnetic quantum oscillations in the underdoped cuprates YBa$_2$Cu$_3$O$_{6+x}$ with $x=0.61$, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprate
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In p