ﻻ يوجد ملخص باللغة العربية
Motivated by various spin-1/2 compounds like Cs$_2$CuCl$_4$ or $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, we derive a Raman-scattering operator {it `a la} Shastry and Shraiman for various geometries. For T=0, the exact spectra is computed by Lanczos algorithm for finite-size clusters. We perform a systematic investigation as a function of $J_2/J_1$, the exchange constant ratio: ranging from $J_2=0$, the well known square-lattice case, to $J_2/J_1=1$ the isotropic triangular lattice. We discuss the polarization dependence of the spectra and show how it can be used to detect precursors of the instabilities of the ground state against quantum fluctuations.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infi
We numerically study the Heisenberg models on triangular lattices by extending it from the simplest equilateral lattice with only the nearest-neighbor exchange interaction. We show that, by including an additional weak next-nearest-neighbor interacti
We report a muSR study of LiCrO2, which has a magnetic lattice made up of a stacking of triangular Heisenberg antiferromagnetic (Cr3+, S = 3/2) layers. A static magnetically ordered state is observed below the transition temperature T_N = 62 K, while
We study the interplay of competing interactions in spin-$1/2$ triangular Heisenberg model through tuning the first- ($J_1$), second- ($J_2$), and third-neighbor ($J_3$) couplings. Based on large-scale density matrix renormalization group calculation
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the antiferromagnetic first ($J_1$) and second ($J_2$) nearest-neighbor interactions using density matrix renormalization group. By studying the spin correlation function, we fin